Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Xét \(\Delta AHI,\Delta AKI\) có:
\(\widehat{AHI}=\widehat{AKI}=90^o\)
AI: cạnh chung
\(\widehat{A_1}=\widehat{A_2}\left(=\frac{1}{2}\widehat{A}\right)\)
\(\Rightarrow\Delta AHI=\Delta AKI\) ( c.huyền - g.nhọn )
\(\Rightarrow HI=KI\) ( cạnh t/ứng ) (1)
Xét \(\Delta BHI,\Delta CKI\) có:
IB = IC ( gt )
\(\widehat{BHI}=\widehat{CKI}=90^o\)
IH = IK ( theo (1) )
\(\Rightarrow\Delta BHI=\Delta CKI\) ( c.huyền - c.g.vuông)
\(\Rightarrow BH=CK\) ( cạnh t/ứng ) ( đpcm )
Vậy...
mik nghĩ câu a.b. bn làm đc,
c,BM=MC(AM là trung tuyến )=>AM c~ là đường cao(đặc biêt của tam giác cân) (1)
xét 2 tam giácvuông BDM và ta giác vuông CDM
MD chung,
MB=MC(trung tuyến AM)
=>2 tam giác vuông BDM=CDM(2 cạnh góc vuông)
=>DM là trung tuyến của BC (2)
từ 1 và 2,ta thấy A,M,D đều thuộc trung tuyến của BC,=>A,M,D thẳng hàng
mik làm sai ở đâu thì nhắc nha
Ta có tam giác EPQ cân tại E và CQ là phân giác góc BCA, nên E P Q ^ = E Q P ^ = H Q C ^ = 90 0 − H C Q ^ = 90 0 − P C K ^ .
Do đó E P Q ^ + P C K ^ = 90 0 , nên P K ⊥ A C .
\(\widehat{BKC}=\widehat{BHC}\left(=90^0\right)\) nên HKBC nội tiếp đường tròn
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE