K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

hay B,E,D,C cùng thuộc một đường tròn

Tâm I là trung điểm của BC

b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{EAC}\) chung

Do đó: ΔADB\(\sim\)ΔAEC

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(AE\cdot AB=AD\cdot AC\)

4 tháng 10 2017

a, BHCK có I là trung điểm hai đường chéo

b, Ta có ∆ABK, ∆ACK vuông tại B và C nên A,B,K,C nằm trên đường tròn đường kính AK

c, Ta có OI là đường trung bình của ∆AHK => OI//AH

d, Gọi AH cắt BC tại M. Ta có BE.BA = BM.BC và CA.CD = CM.BC => ĐPCM

Sửa đề: Đường cao BD

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}\left(=90^0\right)\)

Do đó: BEDC là tứ giác nội tiếp

hay B,E,D,C cùng thuộc 1 đường tròn

b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{A}\) chung

Do đó: ΔADB\(\sim\)ΔAEC

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(AD\cdot AC=AE\cdot AB\)

18 tháng 8 2020

Cho tam giác ABC (AB<AC) có 2 đường chéo BD và CE cắt nhau tại H, lấy I là trung điểm BC ạ