K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

A B C M D E

1 tháng 5 2018

xét tam giác AMB và AMD , có:

AM:chung

DAM=MAB

AD=AB(gt)

=> tam giác AMB = AMD (C.G.C.)

=> MB=MD

27 tháng 4 2017

Xét t/g BAM và t/g DAM:

AB=AD(gt)

BAM=DAM(gt)

AM chung (gt)

Do đó t/g BAM= DAM(c.g.c)

Suy ra BM=DM( cặp cạnh tương ứng)

Vì góc MAD+AMD = MDC(t/c góc ngoài)

Suy ra MC lớn nhất trong t/g MDC

Hay DM<MC mà BM=DM nên BM<MC

          

27 tháng 4 2017

Xét tam giác BAM và tam giác DAM có:

AB=AD(gt)

góc BAM= góc DAM(gt)

AM cạnh chung

Suy ra tam giác BAM= tam giác DAM(c-g-c)

Suy ra BM=DM(hai cạnh tương ứng)

Vì góc MAD+ góc AMD= góc MDC(t/c góc ngoài)

SUy ra MC là cạnh lớn nhất trong tam giác MDC

Hay DM<MC mà BM=DM nên BM<MC

a: Xét ΔABD và ΔAMD có

AB=AM

góc BAD=góc MAD

AD chung

Do đó; ΔABD=ΔAMD

b: Xét ΔDBN và ΔDMC có

góc DBN=góc DMC

DB=DM

góc BDN=góc MDC

Do đó; ΔDBN=ΔDMC

=>BN=MC

c: Xét ΔANC có AB/BN=AM/MC

nên BM//CN

9 tháng 5 2018

a) Bạn xét 2 tam giác ABM và tam giác ADM ( c-g-c )

Suy ra BM = DM ( 2 cạnh tương ứng )

b) Xét 2 tam giác AKD và tam giác ACB ( g-c-g )

Suy ra AK = AC ( 2 cạnh tương ứng )

Suy ra tan giác AKC cân tại A 

Mấy cái tam giác bằng nhau bạn tự chứng minh

9 tháng 5 2018

Chưa có câu c kìa

Vs ng` ta đăng bài vì ko lm đc sao m nói tự chứng minh như đúng rồi ý , z nói lm cái j???

a: Xét ΔABM và ΔADM có 

AB=AD

\(\widehat{BAM}=\widehat{DAM}\)

AM chung

Do đó: ΔABM=ΔADM

Suy ra: MB=MD

1 tháng 5 2018

Xét tam giác ABM và tam giác ADM có

AB=AD(gt)

gócBAM=gócDAM(AM p/giác)

AM:cạnh chung

suy ra, tam giác ABM =tam giác ADM

Xét ΔABM và ΔADM có 

AB=AD(gt)

\(\widehat{BAM}=\widehat{DAM}\)(AM là tia phân giác của \(\widehat{BAD}\))

AM chung

Do đó: ΔABM=ΔADM(C-g-c)

Suy ra: MB=MD(Hai cạnh tương ứng) và \(\widehat{ABM}=\widehat{ADM}\)(Hai góc tương ứng)

Ta có: \(\widehat{ABM}+\widehat{EBM}=180^0\)(hai góc kề bù)

\(\widehat{ADM}+\widehat{CDM}=180^0\)(hai góc kề bù)

mà \(\widehat{ABM}=\widehat{ADM}\)(cmt)

nên \(\widehat{EBM}=\widehat{CDM}\)

Xét ΔBME và ΔDMC có 

\(\widehat{EBM}=\widehat{CDM}\)(cmt)

MB=MD(cmt)

\(\widehat{BME}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔBME=ΔDMC(g-c-g)

Suy ra: ME=MC(Hai cạnh tương ứng)

Xét ΔMEC có ME=MC(cmt)

nên ΔMEC cân tại M(Định nghĩa tam giác cân)

a: Xét ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD

=>ΔABD=ΔAED

=>DB=DE
b: Xét ΔAEK vuông tại E và ΔABC vuông tại B có

AE=AB

góc EAK chung

=>ΔAEK=ΔABC

=>AK=AC

=>ΔAKC cân tại A