Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét t/g BAM và t/g DAM:
AB=AD(gt)
BAM=DAM(gt)
AM chung (gt)
Do đó t/g BAM= DAM(c.g.c)
Suy ra BM=DM( cặp cạnh tương ứng)
Vì góc MAD+AMD = MDC(t/c góc ngoài)
Suy ra MC lớn nhất trong t/g MDC
Hay DM<MC mà BM=DM nên BM<MC
Xét tam giác BAM và tam giác DAM có:
AB=AD(gt)
góc BAM= góc DAM(gt)
AM cạnh chung
Suy ra tam giác BAM= tam giác DAM(c-g-c)
Suy ra BM=DM(hai cạnh tương ứng)
Vì góc MAD+ góc AMD= góc MDC(t/c góc ngoài)
SUy ra MC là cạnh lớn nhất trong tam giác MDC
Hay DM<MC mà BM=DM nên BM<MC
a: Xét ΔABD và ΔAMD có
AB=AM
góc BAD=góc MAD
AD chung
Do đó; ΔABD=ΔAMD
b: Xét ΔDBN và ΔDMC có
góc DBN=góc DMC
DB=DM
góc BDN=góc MDC
Do đó; ΔDBN=ΔDMC
=>BN=MC
c: Xét ΔANC có AB/BN=AM/MC
nên BM//CN
a) Bạn xét 2 tam giác ABM và tam giác ADM ( c-g-c )
Suy ra BM = DM ( 2 cạnh tương ứng )
b) Xét 2 tam giác AKD và tam giác ACB ( g-c-g )
Suy ra AK = AC ( 2 cạnh tương ứng )
Suy ra tan giác AKC cân tại A
Mấy cái tam giác bằng nhau bạn tự chứng minh
a: Xét ΔABM và ΔADM có
AB=AD
\(\widehat{BAM}=\widehat{DAM}\)
AM chung
Do đó: ΔABM=ΔADM
Suy ra: MB=MD
Xét tam giác ABM và tam giác ADM có
AB=AD(gt)
gócBAM=gócDAM(AM p/giác)
AM:cạnh chung
suy ra, tam giác ABM =tam giác ADM
Xét ΔABM và ΔADM có
AB=AD(gt)
\(\widehat{BAM}=\widehat{DAM}\)(AM là tia phân giác của \(\widehat{BAD}\))
AM chung
Do đó: ΔABM=ΔADM(C-g-c)
Suy ra: MB=MD(Hai cạnh tương ứng) và \(\widehat{ABM}=\widehat{ADM}\)(Hai góc tương ứng)
Ta có: \(\widehat{ABM}+\widehat{EBM}=180^0\)(hai góc kề bù)
\(\widehat{ADM}+\widehat{CDM}=180^0\)(hai góc kề bù)
mà \(\widehat{ABM}=\widehat{ADM}\)(cmt)
nên \(\widehat{EBM}=\widehat{CDM}\)
Xét ΔBME và ΔDMC có
\(\widehat{EBM}=\widehat{CDM}\)(cmt)
MB=MD(cmt)
\(\widehat{BME}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔBME=ΔDMC(g-c-g)
Suy ra: ME=MC(Hai cạnh tương ứng)
Xét ΔMEC có ME=MC(cmt)
nên ΔMEC cân tại M(Định nghĩa tam giác cân)
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>DB=DE
b: Xét ΔAEK vuông tại E và ΔABC vuông tại B có
AE=AB
góc EAK chung
=>ΔAEK=ΔABC
=>AK=AC
=>ΔAKC cân tại A
xét tam giác AMB và AMD , có:
AM:chung
DAM=MAB
AD=AB(gt)
=> tam giác AMB = AMD (C.G.C.)
=> MB=MD