Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vẽ hình giúp mình nhé!
a. Cm: DFEH là hình thang cân
Xét tam giác AHC vuông tại H có HF là đường trung tuyến ứng với cạnh huyền.
\(\Rightarrow HF=\dfrac{AC}{2}\left(1\right)\)
Xét tam giác ABC có: \(\left\{{}\begin{matrix}AD=DB\\BE=EC\end{matrix}\right.\)
\(\Rightarrow\)DE là đường trung bình trong tam giác ABC
\(\Rightarrow\) \(DE=\dfrac{AC}{2}\left(2\right)\)
Lại có: Tam giác ABC có: \(\left\{{}\begin{matrix}AD=DB\\AF=FC\end{matrix}\right.\) \(\Rightarrow\)DF là đường trung bình của tam giác ABC
\(\Rightarrow\) DF//BC
\(\Rightarrow\) Tứ giác DFEH là hình thang (3)
Từ (1),(2), và (3) suy ra: DFEH là hình thang cân.
b. Cm: I là trung điểm của DF
Ta có: DFEH là hình thang cân
\(\Rightarrow DE=HF=\dfrac{AC}{2}=AF\)
Mà DE//AC \(\Rightarrow\) DE//AF
\(\Rightarrow\)Tứ giác AFED là hình bình hành
Mà \(I=DF\cap AE\)
\(\Rightarrow\) I là trung điểm của DF
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>BDEC là hình thang
b: Xét tứ giác DECF có
DE//CF
DF//CE
Do đó: DECF là hình bình hành
=>DC cắt EF tại trung điểm của mỗi đường
=>E,M,F thẳng hàng
Lần lượt cm được DE,DF,EF là đường trung bình tam giác ABC
\(\Rightarrow DE=\dfrac{1}{2}BC=7\left(cm\right);DF=\dfrac{1}{2}AC=5\left(cm\right);EF=\dfrac{1}{2}AB=3\left(cm\right)\)
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
b) Ta có DF // BC (cmt) hay DI // BE; D là trung điểm của AD ⇒ I là trung điểm của AE và DI = BE/2
Trong ΔAEC có IF là đường trung bình nên IF = EC/2 mà EC = EB (gt) ⇒ IF = ID hay I là trung điểm của DF.