K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
Suy ra: DA=DE và BA=BE

=>BD là đường trung trực của AE

b: Ta có: \(\widehat{CAE}+\widehat{BAE}=90^0\)

\(\widehat{BEA}+\widehat{HAE}=90^0\)

mà \(\widehat{BAE}=\widehat{BEA}\)

nên \(\widehat{CAE}=\widehat{HAE}\)

hay AE là tia phân giác của góc HAC

c: Ta có: DA=DE

mà DE<DC

nên DA<DC

9 tháng 4 2022

sai

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:a, - 120x5y4 b, 60x6y2 c, -5x15y3Bài 2: Điền đơn thức thích hợp vào chỗ trống:a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5Bài 3: Thu gọn các đơn thức sau:a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I...
Đọc tiếp

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:
a, - 120x5y4 b, 60x6y2 c, -5x15y3
Bài 2: Điền đơn thức thích hợp vào chỗ trống:
a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5
Bài 3: Thu gọn các đơn thức sau:
a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2
d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2
Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I là trung điểm của BC. Vẽ đường trung trực của cạnh BC cấtC tại D. Trên tia đối của tia AC lấy điểm E sao cho AE = AD. Gọi F là giao điểm của BE và đường thẳng AI. Chứng minh :
a, CD = BE; b, Góc BEC = 2. góc BEC
c, Tam giác AEF cân d, AC=BF
Bài 5: Cho tam giác ABC có góc A bằng 90o và BD là đường phân giác. Trên BC lấy điểm E sao cho BE = BA
a, Chứng minh AD = DE và BD là đường trung trực của đoạn thẳng AE
b, Kẻ AH vuông góc với BC. Chứng minh: AE là tia phân giác của góc HAC
c, Chứng minh AD<CD
d, Gọi tia Cx là tia đối của tia CB. Tia phân giác của góc Acx cắt đường thẳng BD tại K. Tính số đo góc BAK
Bài 6: Cho tam giác abc cân tại a, đường phân giác của góc b cắt ac tại M.
Kẻ me vuông góc với bc ( e thuộc bc). đường thẳng em cắt ba tại I
a, chứng minh tam giác abm = tam giác ebm
b, chứng minh bm là đường trung trực của ae
c, so sánh am và mc
d, chứng minh tam giác BCI cân

0

Đề sai rồi bạn

a) Xét \(\Delta\)ABD và \(\Delta\)FBD có

BAD=BFD (=90 độ)

ABD=FBD (BD là tia pg của ABC)

BD là cạnh chung

Do đó \(\Delta\)ABD=\(\Delta\)FBD(chgn)

b)Ta có  \(\Delta\)ABD=\(\Delta\)FBD(cmt)

\(\Rightarrow\)AB=FB(2 cạnh t/ứ)

\(\Rightarrow\Delta ABFcântạiB\)

Xét \(\Delta\)ABF cân tại B có : BD là pg ABC hay BD là pg ABF

\(\Rightarrow\)BD đồng thời là đường trung trực của đoạn thẳng À

c)Vì \(\Delta\) DFC vuông tại F

\(\Rightarrow\)cạnh huyền DC là cạnh lớn nhất của \(\Delta\) DFC

\(\Rightarrow\)DC>FD

Mà AD=FD (vì \(\Delta\)ABD=\(\Delta\)FBD)

Nên AD<DC

d) Xét \(\Delta\)ADE và \(\Delta\)FDC có

          DAE=DFC(=90 độ)

          AE=CF(gt)

          AD=FD(cmt)

Do đó\(\Delta\)ADE=\(\Delta\)FDC(2 cạnh góc vuông)

         \(\Rightarrow\)ADE=FDC(2 góc t./ứ)

Mà ADE+EDC=180 độ

     CDF+EDC=180 độ

Hay EDF=180 độ

\(\Rightarrow\)E,D,F thẳng hàng

24 tháng 5 2021

a)xét ΔABD và ΔFED có:

\(\widehat{BAD}=\widehat{BFD}=90^o\)

BD là cạnh chung

\(\widehat{ABD}=\widehat{FBD}\)(BD là phân giác của \(\widehat{ABF}\))

⇒ΔABD=ΔFED(c.huyền.g.nhọn)

b)gọi I là giao điểm của AF và BD

xét ΔABI và ΔFBI có:

BF=AB(ΔABD=ΔFED)

BI là cạnh chung

\(\widehat{ABI}=\widehat{FBI}\)(BD là phân giác của \(\widehat{ABF}\))

⇒ΔABI=ΔFBI(c-g-c)

\(\widehat{BIA}=\widehat{BIF}\)(2 góc tương ứng)(1)

  

Mà \(\widehat{BIA}+\widehat{BIF}=180^o\)(2 góc kề bù)(2)

từ (1) và (2) ⇒\(\widehat{BIA}=\widehat{BIF}=\dfrac{180^o}{2}=90^o\)

vì ΔABI=ΔFBI⇒IA=IF

Do đó:BD là trung trực của AF(đ.p.cm)

c)xét ΔDCF có

DC là cạnh huyền

⇒DC>DF

Mà DF=AD

⇒DC>AD

d)Ta có:

AB=DF(ΔABD=ΔFED)

Mà AE=FC

⇒AB+AE=DF+FC

hay BE=DC

xét ΔBDC và ΔBDE có:

BE=DC(ch/m trên)

\(\widehat{EBD}=\widehat{CBD}\)(BD là phân giác của \(\widehat{EBC}\))

BD là cạnh chung

⇒ ΔBDC=ΔBDE(c-g-c)

\(\widehat{BDE}=\widehat{BDC}\)(2 góc tương ứng)

Mà \(\widehat{BDA}=\widehat{BDF}\)(ΔABD=ΔFED)

\(\widehat{BDE}-\widehat{BDA}=\widehat{BDC}-\widehat{BDF}\)

hay \(\widehat{ADE}=\widehat{FDC}\)(đ.p.cm)

ta có:\(\widehat{ADE}+\widehat{CDE}=180^o\)(2 góc kề bù)

Mà \(\widehat{ADE}=\widehat{FDC}\) ⇒\(\widehat{FDC}+\widehat{CDE}=180^o\) 

hay E,D,F thẳng hàng(đ.p.cm)

a: XétΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

mà AD là tia phân giác

nên AD là đường cao

b: Xét ΔABE và ΔACF có 

AB=AC

\(\widehat{ABE}=\widehat{ACF}\)

BE=CF

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường cao

b: Xét ΔAEB và ΔAFC có 

EB=FC

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

Do đó: ΔAEB=ΔAFC

Suy ra: AE=AF

18 tháng 1 2022

cảm ơn

26 tháng 3 2022

Hỏi đáp Toán
 a) 

ΔABD và ΔEBD có:
BA = BE (gt)
B1^=B2^ (BD là tia phân giác góc B)
BD là cạnh chung
⇒ΔABD=ΔEBD (c.g.c)

 

 BAD^=BED^ (hai góc tương ứng)
mà BAD^ =900
BED^ =900
 DE  BE

b) ΔABI và ΔEBI có:
BA = BE (gt)

3 tháng 5 2016

C2 

Xét tam giác ADF và tam giác EDC có : 

DA = DE ( Cmt ) 

DEF = DEC 

AF = EC ( Cmt ) 

=) ........ ( c.g.c ) 

=) ADF = EDC ( ...)

mà :  EDC + EDA = 180 ĐỘ

=)  EDA + ADF = 180 độ 

=) E D F thẳng hàng 

k cko mk ddi

2 tháng 5 2016

xem lại đề : sao BD _|_ BC đc?