K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

a) Tam giác ADE có HE=HA; MD=MA nên HM là đường trung bình của tam giác ADE

=> HM//ED

mà HM vuông góc với AE nên ED cũng vuông góc với AE.

Vậy ΔAED vuông tại E.

b) Xét ΔABM và ΔDCM có:

       MA=MD(gt)

Góc AMB=DMC(đối đỉnh)

       MB=MC(gt)

Vậy ΔABM=ΔDCM(c.g.c).

=> Góc ABM = DCM( hai góc tương ứng) (1)

ΔABE có BH vừa là đường cao vừa là trung tuyến nên ΔABE cân tại B, nên BH cũng là đường cao

=> Góc ABM=EBH (2)

Từ (1) và (2) suy ra góc EBH = DCM hay EBC = DCB.

Tứ giác BCDE có ED//BC( do ED//HM đó) nên BCDE là hình thang.

Hình thang BDCE có thêm hai góc kề đáy EBC=DCB nên BDCE là hình thang cân.

24 tháng 10 2021

a: Xét ΔABC có

D là trung điểm của BC

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔBAC

Suy ra: DE//AB

hay DE⊥AC

18 tháng 11 2022

a: Xét ΔBNQ có

C là trung điểm của BQ

CA//NQ

Do đó: A là trung điểm của NB

Xét ΔCPM có

B là trung điểm của CP

CA//MP

DO đó: A là trung điểm của CM

Xét tứ giác BMNC có

A là trung điểm chung của BN và MC

nên BMNC là hình bình hành

b: Để ANKM là hình bình hành

nên AM//KN và AN//KM

=>AB//MK và AB=MK

=>ABMK là hình bình hành

=>AI//BM

Xét ΔCBM có

A là trung điểm của CA

AI//BM

DO đó; I là trung điểm của BC

 

19 tháng 11 2019

Xét hai \(\Delta ABC\)và \(ADE\)có:

\(AB=AD\left(gt\right)\)

\(\widehat{BAC}=\widehat{DAE}\)(vì hai góc đối đỉnh)

\(AC=AE\left(gt\right)\)

\(\Rightarrow\Delta ABC=\Delta ADE\left(c-g-c\right)\)

b) \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{AED}\)(hai góc tương ứng)

Mà hai góc này là vị trí so le nên 

\(DE\)// \(BC\)

đpcm.

c) đang nghĩ 

19 tháng 11 2019

a ) Xét \(\Delta\)ABC và \(\Delta\)ADE có :

  • AB = AD ( giả thiết )
  • AC = AE ( giả thiết )
  • BÂC = DÂE ( đối đỉnh )

\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)ADE ( c - g - c ) ( đpcm )

b )Ta có : \(\Delta\)ABC = \(\Delta\)ADE ( cm câu a )

 \(\Rightarrow\)DÊA = Góc ACB ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\)ED // BC ( đpcm )

c ) #Theo mình câu c là M là trung điểm BE và N là trung điểm DC nhé#

Xét \(\Delta\)BEC có :

  • M là trung điểm BE
  • A là trung điểm CE

\(\Rightarrow\)AM là đường trung bình của \(\Delta\)BEC

\(\Rightarrow\)AM // BC ( 1 )

Xét \(\Delta\)BDC có :

  • A là trung điểm BD
  • N là trung điểm DC

\(\Rightarrow\)AN là đường trung bình của \(\Delta\)BDC

\(\Rightarrow\)AN // BC ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)M , A , N thẳng hàng ( Theo tiên đề Ơ - clit )

12 tháng 11 2018

a) Ta có: DE+DF=2AM⟺DEAM+DFAM=2⟺BDBM+DCMC=2⟺BCBM=2(đúng do MB=MC).

b) Ta có: NA∥DM;ND∥AM⟹NAMD là hình bình hành.

⟹NA=DM.

Khi đó: NFNE=NFND.NDNE=AFAC.AN+DBAN=DMMC.BMDM=1⟹NE=NF.

c) Ta có: