K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

c) Bổ đề: Cho tam giác ABC có đường cao AH. Khi đó \(AH^2\le\dfrac{\left(AB+AC-CB\right)\left(AC+AB+BC\right)}{4}\).

Thật vậy, dựng hình chữ nhật AHCE. Lấy F đối xứng với C qua AF.

Ta có \(AH=CE=\dfrac{CF}{2}\).

Do đó \(CF^2+CB^2=BF^2\le\left(AB+AF\right)^2=\left(AB+AC\right)^2\Rightarrow CF^2\le\left(AB+AC-CB\right)\left(AC+AB+BC\right)\Rightarrow AH^2\le\dfrac{\left(AB+AC-CB\right)\left(AC+AB+BC\right)}{4}\).

Bổ đề được cm.

Áp dụng ta có \(\dfrac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\ge\dfrac{\left(AB+BC+CA\right)^2}{\dfrac{\left(AB+AC-CB\right)\left(AC+AB+BC\right)}{4}+\dfrac{\left(BC+BA-AC\right)\left(AC+AB+BC\right)}{4}+\dfrac{\left(BC+AC-AB\right)\left(AC+AB+BC\right)}{4}}=4\).

Vậy ta có đpcm.

12 tháng 3 2021

a) Ta có \(\dfrac{HA'}{AA'}=\dfrac{HA'.BC}{AA'.BC}=\dfrac{2S_{HBC}}{2S_{ABC}}=\dfrac{S_{HBC}}{S_{ABC}}\).

Tương tự \(\dfrac{HB'}{BB'}=\dfrac{S_{HCA}}{S_{ABC}};\dfrac{HC'}{CC'}=\dfrac{S_{HAB}}{S_{ABC}}\).

Do đó \(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=\dfrac{S_{HBC}+S_{HCA}+S_{HAB}}{S_{ABC}}=1\).

13 tháng 1 2018

Đa giác. Diện tích của đa giácĐa giác. Diện tích của đa giác

13 tháng 1 2018

Ta có:

\(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}\)

\(\dfrac{HA'.BC}{AA'.BC}+\dfrac{HB'.AC}{BB'.AC}+\dfrac{HC'.AB}{CC'.AB}\)

\(\dfrac{S_{BHC}}{S_{ABC}}+\dfrac{S_{AHC}}{S_{ABC}}+\dfrac{S_{AHB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1\)

11 tháng 4 2017

a) \(\dfrac{S_{HBC}}{S_{ABC}}=\dfrac{\dfrac{1}{2}.HA'.BC}{\dfrac{1}{2}.AA'.BC}=\dfrac{HA'}{AA'}\)

Tương tự: \(\dfrac{S_{HAB}}{S_{ABC}}=\dfrac{HC'}{CC'};\dfrac{S_{HAC}}{S_{ABC}}=\dfrac{HB'}{BB'}\)

\(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=\dfrac{S_{HBC}}{S_{ABC}}+\dfrac{S_{HAC}}{S_{ABC}}+\dfrac{S_{HAB}}{S_{ABC}}=\dfrac{S_{HAB}+S_{HAC}+S_{HAB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1\)

b) Áp dụng tính chất đường phân giác vào các tam giác: ADC; ABI; AIC, ta có:

\(\dfrac{BI}{IC}=\dfrac{AB}{AC};\dfrac{AN}{NB}=\dfrac{AI}{BI};\dfrac{CM}{MA}=\dfrac{IC}{AI}\)

\(\dfrac{BI}{IC}.\)\(\dfrac{AN}{AB}.\)\(\dfrac{CM}{MA}=\dfrac{AB}{AC}.\)\(\dfrac{AI}{BI}.\)\(\dfrac{IC}{AI}=\dfrac{AB}{AC}.\)\(\dfrac{IC}{BI}\)

\(\Rightarrow BI.AN.CM=BN.IC.AM\)

AH
Akai Haruma
Giáo viên
18 tháng 4 2018

Lời giải:

Ta thấy:

\(\left\{\begin{matrix} S_{HBC}=\frac{HA'.BC}{2}\\ S_{ABC}=\frac{AA'.BC}{2}\end{matrix}\right.\Rightarrow \frac{S_{HBC}}{S_{ABC}}=\frac{HA'}{AA'}(*)\)

\(\left\{\begin{matrix} S_{HAC}=\frac{HB'.AC}{2}\\ S_{ABC}=\frac{BB'.AC}{2}\end{matrix}\right.\Rightarrow \frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}(**)\)

\(\left\{\begin{matrix} S_{HAB}=\frac{HC'.AB}{2}\\ S_{ABC}=\frac{CC'.AB}{2}\end{matrix}\right.\) \(\Rightarrow \frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}(***)\)

Từ \((*); (**); (***)\Rightarrow \frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=\frac{S_{HBC}+S_{HCA}+S_{HAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

4 tháng 12 2017

A B C A' B' C' H Ta có : \(\dfrac{HA'}{AA'}=\dfrac{S_{HBC}}{S_{ABC}}\)( Vì có chung đáy BC nên tỉ số hai đường cao cũng bằng tỉ số hai diện tích) ( * )

Tương tự , ta cũng có :

\(\dfrac{HB'}{BB'}=\dfrac{S_{HCA}}{S_{ABC}}\) (**)

\(\dfrac{HC'}{CC'}=\dfrac{S_{HAB}}{S_{ABC}}\) (***)

Từ : ( * ; ** ; ***) =>\(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=\dfrac{S_{HAC}+S_{HAB}+S_{HBC}}{S_{ABC}}\)

\(=\dfrac{S_{ABC}}{S_{ABC}}=1\left(đpcm\right)\)