Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có BC = 1 cm, AC = 7 cm. Tìm độ dài cạnh AB, biết độ dài này là một số nguyên (cm).
Chú ý |AC - BC| < AB < AC + BC => 6 < AB <8. Do AB là số nguyên nên AB = 7 cm.
XétΔABC có AB-BC<AC<AB+BC
=>AC=5(cm)(Vì AC là số nguyên)
Theo bất đẳng thức tam giác ABC ta có:
AC – BC < AB < AC + BC
Thay BC = 1cm, AC = 7cm, ta được:
7 – 1 < AB < 7 + 1
6 < AB < 8 (1)
Vì độ dài AB là một số nguyên (cm) thỏa mãn (1) nên AB = 7cm
Do đó ΔABC cân tại A vì AB = AC = 7cm.
* Cách dựng tam giác ABC
- Vẽ BC = 1cm
- Dựng đường tròn tâm B bán kính 7cm ; đường tròn tâm C bán kính 7cm. Hai đường tròn cắt nhau tại A.
Theo bất đẳng thức tam giác ABC có :
Có AC–BC<AB<AC+BC
có 7–1<AB<7+1
6<AB<8 (1)
Vì độ dài AB là số nguyên thỏa mãn với (1) nên AB = 7 cm
Do đó ∆ ABC là tam giác cân vì nó cân tại a và có AB= AC = 7 cm
Theo bất đẳng thức tam giác ABC ta có:
AC – BC < AB < AC + BC
Theo độ dài BC = 1cm, AC = 7cm
7 – 1 < AB < 7 + 1
6 < AB < 8 (1)
Vì độ dài AB là một số nguyên thỏa mãn (1) nên AB = 7cm
Do đó ∆ ABC cân tại A vì AB = AC = 7cm
C
Xét \(\triangle ABC\) ta có :
\(| BC-AC| < AB < AC+BC\) ( bất đẳng thức tam giác )
\(\Rightarrow |1-7 | < AB < 1+7 \)
\(\Rightarrow |-6 | < AB < 8\)
\(\Rightarrow 6< AB < 8\)
Do \(AB \in \mathbb{Z}\) \(\Rightarrow AB = 7\)
Vậy \(AB=7\) cm .
Chọn \(\mathbb{C}\)