K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1)Cho một số tự nhiên có hai chữ số. Biết rằng tổng các số tự nhiên liên tiếp bắt đầu từ 1 đến số này là một số mà hai chữ số tận cùng của nó chính bằng số có hai chữ số ban đầu. Tìm số ban đầu.2)Tìm số tự nhiên nhỏ nhất mà khi chia số đó cho 29 thì dư 5, còn chia số đó cho 31 thì dư 28?3)Khi chia 1 số gồm 6 chữ số P giống nhau cho số Q gồm 4 chữ số giống nhau thì được...
Đọc tiếp

1)Cho một số tự nhiên có hai chữ số. Biết rằng tổng các số tự nhiên liên tiếp bắt đầu từ 1 đến số này là một số mà hai chữ số tận cùng của nó chính bằng số có hai chữ số ban đầu. Tìm số ban đầu.

2)Tìm số tự nhiên nhỏ nhất mà khi chia số đó cho 29 thì dư 5, còn chia số đó cho 31 thì dư 28?

3)Khi chia 1 số gồm 6 chữ số P giống nhau cho số Q gồm 4 chữ số giống nhau thì được thương là 233 và 1 số dư là R nào đó .Sau khi bỏ đi 1 chữ số của số P và 1 chữ số của số Q thì thương không thay dổi và số dư giảm 1000.Tìm số Q

4)Tim ba số a,b,c, Biết 1+2+3+...+bc=abc

5)Từ ba chữ số đôi một khác nhau và khác nhau và khác 0, ta lập tất cả các số có ba chữ số đôi một khác nhau. Biết rằng tổng các số lập được là 2886, hiệu giữa số lớn nhất và số nhỏ nhất trong các số lập được là 495. Các chữ số đó là: ......;.....;.......(viết các chữ số theo giá trị tăng dần)

 

0
 1. Chứng minh rằng tổng các số ghi trên vé xổ số có 6 chữ số mà tổng 3 chữ số đầu bằng tổng 3 chữ số cuối thì chia hết cho 13 ( các chữ số đầu có thể bằng không )2. Tìm số abcd biết rằng số đó chia hết cho tích ab và cd3. Chứng minh rằng trong tất cả các số tự nhiên khác nhau có 7 chữ số lập bởi cả 7 chữ số 1, 2, 3, 4, 5, 6, 7, không có 2 số nào mà một số chia hết chosố còn...
Đọc tiếp

 1. Chứng minh rằng tổng các số ghi trên vé xổ số có 6 chữ số mà tổng 3 chữ số đầu bằng tổng 3 chữ số cuối thì chia hết cho 13 ( các chữ số đầu có thể bằng không )

2. Tìm số abcd biết rằng số đó chia hết cho tích ab và cd

3. Chứng minh rằng trong tất cả các số tự nhiên khác nhau có 7 chữ số lập bởi cả 7 chữ số 1, 2, 3, 4, 5, 6, 7, không có 2 số nào mà một số chia hết chosố còn lại.

4. Cho 3 số nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước d đơn vị. Chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.

5. Hãy viết số 100 dưới dạng tổng các số lẽ lien tiếp.

6. Tìm số tự nhiên có 3 chữ số, biết rằng nó tăng gấp n lần nếu cộng mỗi chữ số của nó với n ( n là số tự nhiên, có thể gồm một hoặc nhiều chữ số ).

7. Tìm số tự nhiên x có chữ số tận cùng bằng 2, biết rằng x, 2x, 3x đều là các số có 3 chữ số và 9 chữ số của 3 số đó đều khác nhau và khác không.

8. Tìm số tự nhiên x có 6 chữ số, biết rằng các tích 2x, 3x, 4x, 5x, 6x cũng là số có 6 chữ số gồm cả 6 chữ số ấy.a. Cho biết 6 chữ số của số phải tìm là 1, 2, 4, 5, 7, 8.b. Giải bài toán nếu không cho điều kiện a.

9. Tìm số tự nhiên n lớn nhất để tích các số tự nhiên từ 1 đến 1000 chia hết  cho 5n

Xem nội dung đầy đủ tại:http://123doc.org/document/2674306-tuyen-chon-toan-nang-cao-va-phat-trien-lop-6.htm

0
23 tháng 11 2017

1.

Gọi số cần tìm là a

theo bài ra ta có: a-7 chia hết 11

 a-7 chia hết 13

a-7 chia hết 17 và a là số lớn nhất có 4 chữ số

=> (a-7) thuộc BC (11,13,17) và a lớn nhất có 4 chữ số

BCNN (11,13,17)=2431

(a-7) thuộc BC (11,13,17)= B(2431)= (0; 2431;4862; 7298; 9724; 12155;....)

=>a thuộc (7; 2438; 4869; 7305; 9731; 12163;...)

mà a là số lớn nhất có 4 chữ số

nên a=9731

Vậy số cần tìm là 9731

15 tháng 7 2021

Bài 2

Gọi số cũ là\(\overline{ab}\)

\(9\overline{ab}=\overline{ab}.13\)

\(900+\overline{ab}=\overline{ab}.13\)

\(900=\overline{ab}.12\)

\(\overline{ab}=900:12\)

\(\overline{ab}=75\)

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
1) Tìm số tự nhiên n để phân số 3 4 6 99 + + n n a) Có giá trị là số tự nhiên. b) Là phân số tối giản. 2) (1978 1979 1980 21 1958 1980 1979 1978 1979 . . : . . + + − ) ( ) 3) Tìm số tự nhiên có 3 chữ số abc , biết rằng: b = ac 2 và abc − cba = 495 . 4) Tìm các số tự nhiên x, y. sao cho (2x+1)(y-5)=12 5) Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1 6) Chứng tỏ rằng 30 2 12 1 + + n n là phân số tối giản. 7) Tìm x a)...
Đọc tiếp

1) Tìm số tự nhiên n để phân số 3 4 6 99 + + n n a) Có giá trị là số tự nhiên. b) Là phân số tối giản. 2) (1978 1979 1980 21 1958 1980 1979 1978 1979 . . : . . + + − ) ( ) 3) Tìm số tự nhiên có 3 chữ số abc , biết rằng: b = ac 2 và abc − cba = 495 . 4) Tìm các số tự nhiên x, y. sao cho (2x+1)(y-5)=12 5) Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1 6) Chứng tỏ rằng 30 2 12 1 + + n n là phân số tối giản. 7) Tìm x a) 5x = 125; b) 32x = 81 ; c) 52x-3 – 2.52 = 52 .3 8) Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương. 9) Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10. 10) Tính A = 4 + 2 2 + 2 3 + 2 4 +. . . + 2 20 11) Tìm x biết: ( x + 1) + ( x + 2) + . . . + ( x + 100) = 5750. 12) Chứng minh nếu: (ab + cd + eg )⋮ 11 thì abc deg ⋮ 11. 13) Chứng minh 10 28 + 8 ⋮ 72. 14) Hai lớp 6A;6B cùng thu nhặt một số giấy vụn bằng nhau. Lớp 6A có 1 bạn thu được 26 Kg còn lại mỗi bạn thu được 11 Kg ; Lớp 6B có 1 bạn thu được 25 Kg còn lại mỗi bạn thu được 10 Kg . Tính số học sinh mỗi lớp biết rằng số giấy mỗi lớp thu được trong khoảng 200Kg đến 300 Kg. 15) So sánh: 222333 và 333222 16) Tìm các chữ số x và y để số 1x8y2 chia hết cho 36 17) Tìm số tự nhiên a biết 1960 và 2002 chia cho a có cùng số dư là 28 18) Cho : S = 30 + 32 + 34 + 36 + ... + 32002 a) Tính S b) Chứng minh S ⋮ 7 19) Tìm số tự nhiên nhỏ nhất, biết rằng khi chia số này cho 29 dư 5 và chia cho 31 dư 28 20) Tìm chữ số tận cùng của các số sau: a) 571999 b) 931999 21) Cho A= 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5. 22) Cho phân số b a (0 < a < b) cùng thêm m đơn vị (m > 0) vào tử và mẫu thì phân số mới lớn hơn hay bé hơn b a 23) Cho số 155*710* 4*16 có 12 chữ số . chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong ba chữ số 1,2,3 một cách tuỳ thì số đó luôn chia hết cho 396. 24) Chứng tỏ rằng: 2x + 3y chia hết cho 17 ⇔ 9x + 5y chia hết cho 17 25) Một số tự nhiên chia cho 120 dư 58, chia cho 135 dư 88. Tìm a, biết a bé nhất 26) Người ta viết các số tự nhiên liên tiếp bắt đầu từ 1 đến 2006 liền nhau thành một số tự nhiên L . Hỏi số tự nhiên L có bao nhiêu chữ số 27) Có bao nhiêu chữ số gồm 3 chữ số trong đó có chữ số 4 28) Cho các số 0; 1; 3; 5; 7; 9. Hỏi có thể thiết lập được bao nhiêu số có 4 chữ số chia hết cho 5 từ sáu chữ số đã cho.
Ai làm nhanh mik tick

0