Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10a + b = 3. a. b (*)
Cho số tự nhiên ab bằng ba lần tích các chữ số của nó nên số tự nhiên ab chia hết cho a; mà 10a cũng chia hết cho a nên để 10a + b chia hết cho a thì b cũng phải chia hết cho a => b chia hết cho a
Thay b = ka vào (*) ta được:
10a + ka = 3aka
<=> a . ( 10 + k ) = 3aka
<=> 10 + k = 3ak (* *)
=> 10 + k chia hết cho k
Vì k chia hết cho k nên để 10 + k chia hết cho k thì 10 chia hết cho k
=> k là Ư(10)
k là Ư(10), k ∈ N nên k ∈ { 1, 2, 5 }
Thay k vào (**) ta được hai trường hợp: a = 2 và b = 4 và a = 1 và b = 5
Vậy số ab trên là 24 và 15
a. Theo đề bài, ta có: ab = 3ab
\(\Leftrightarrow10a+b=3ab\) (1)
\(\Leftrightarrow\left(10a+b\right)⋮a\)
Vì \(10a⋮a\) nên \(b⋮a\left(đpcm\right)\)
b. Thay b = ka vào (1), ta được:
\(\Leftrightarrow10a+ka=3a.ka\)
\(\Leftrightarrow a\left(10+k\right)=3a.ka\)
\(\Leftrightarrow10+k=3ka\)
\(\Leftrightarrow\left(10+k\right)⋮k\)
Vì \(k⋮k\) nên \(10⋮k\)
\(\Rightarrow k\inƯ\left(10\right)\left[đpcm\right]\)
c. Vì k < 10 nên \(k\in\left\{1;2;5\right\}\)
TH1: k = 1. Suy ra 3a = 11 (loại)
TH2: k = 2. Suy ra 6a = 12 nên a = 2 và b = 4
TH3: k = 5. Suy ra 15a = 15 nên a = 1 và b = 5
Vậy có hai số ab cần tìm là 24 và 15
a) Theo đề bài ra ta có :
ab = 3ab
\(\Rightarrow\) 10a + b = 3ab (1)
\(\Rightarrow\) 10a + b \(⋮\) a
\(\Rightarrow\) b \(⋮\) a
b) Do b = ka nên k < 10 . Thay b = ka vào (1) :
10a + ka = 3a . ka
\(\Rightarrow\) 10 + k = 3ak
\(\Rightarrow\) 10 + k \(⋮\)k
\(\Rightarrow\) 10 \(⋮\) k
c) Do k < 10 nên k \(\in\) { 1 ; 2 ; 5 }
Với k = 1 , thay vào (2) : 11 = 3a , loại
Với k = 2 , thay vào (2) : 12 = 6a \(\Rightarrow\) a = 2 ;
b = ka = 2 . 2 = 4 . Ta có ab = 24 = 3 . 2 . 4
Với k = 5 , thay vào (2) : 15 = 15 \(\Rightarrow\) a = 1 ;
b = ka = 5 . 1 = 5 . Ta có ab = 15 = 3 . 1 . 5
Đáp số : 24 và 15
Cô giáo mình giao bài về nhà làm , mình làm xong sợ sai nên mình nhờ các bạn nhận xét xem mình làm đúng hay sai ạ . Cảm ơn các bạn .