Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
a chia 7 dư 1 => a=7x+1 ( x thuộc N)
b chia 7 dư 2 => b=7k+2 (k thuộc N)
=> ab=(7x+1)(7k+2)=49xk+14x+7k+2
vì 49xk; 14x; 7k đều chia hết cho 7
=> tích ab chia 7 dư 2
Gọi \(a=3k+1;b=3m+2\)
Ta có:\(ab=\left(3k+1\right)\left(3m+2\right)=9km+6k+3m+2\) chia 3 dư 2.
Vậy....
Dễ mà . Em học lớp 6 cũng làm được.
Giả sử a=(c+3) ; b =(d+2) (c ;d chia hết cho 5)
a.b=(c+3) . (d+2)
a.b=(c+3) . d + (c+3) .2
a.b=c.d+3.d+2.c+6
vì c.d ; 3.d 2.c chia het cho 5 ma 6 ko chia 5 du 1 suy ra a.b chia 5 du 1
Các bạn có kiểu chứng minh nào khác rõ ràng hơn ko ? Chứ giải kiểu này... giống đoán mò quá !
Theo đề bài ta có:
a\(\equiv\)2(mod 5)
b\(\equiv\)3 ( mod 5)
=> ab\(\equiv\)2 x 3 ( mod 5 )
ab\(\equiv\)6 ( mod 5)
ab\(\equiv\)1 ( mod 5 )
Vậy ab chia 5 dư 1.
Học tốt nha bn
cách giải
lời giải luôn
1/ a=5k+2; b=5n+3
(ab là a nhân b nếu là ab xẽ khác)
(5k+2)(5n+3)=25k.n+3.5.k+10n+6=5(5k.n+3k+2.n+1)+1 vây ab chia 5 dư 1
2/ a=7k+3
a62=7.7.k^2+2.3.7k+9=7(7k^2+6k+1)+2 vậy a^2 chia 7 dư 2
Bài 2:
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-n^2+12n-35\)
\(=12n-36⋮12\)