K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Giả sử trong 20 chữ số ko có 3 chữ số nào giống nhau

Mà các chữ số chạy từ 0-9

Suy ra ít nhất 1 chữ số xuất hiện 2 lần

\(\Rightarrow\)tổng các chữ số là \(2\left(0+1+2+3+...+8+9\right)=90⋮3\)

suy ra p ko là số ng/tố lớn hơn 3 (mâu thuẫn)

Vậy ĐPCM lun đúng

11 tháng 6 2019

Sửa: p > 3

G/s không có ba chữ số nào giống nhau trong 20 số đó. 

Vì các số chỉ có thể từ 0 -> 9 nên mỗi chữ số xuất hiện 2 lần

Khi đó tổng các chữ số là: 2(0 + 1 + ... + 9) = 2.45 = 90 chia hết cho 3

===> p chia hết cho 3 (vô lí) 

Vậy ta có đpcm

AH
Akai Haruma
Giáo viên
5 tháng 3 2018

Lời giải:

Phản chứng. Giả sử không tồn tại 3 chữ số nào trong $p^n$ giống nhau.

Đặt \(p^n=\overline{a_1a_2...a_{20}}\)

Vì \(0\leq a_1,a_2,...,a_{20}\leq 9\) nên theo nguyên lý Dirichlet tồn tại ít nhất \(\left[ \frac{20}{10}\right]=2\) số giống nhau.

Kết hợp với điều đã giả sử suy ra $p^n$ là một số gồm $20$ chữ số, trong đó luôn có đôi một hai số bằng nhau và bằng các số trải từ $0$ đến $9$

Khi đó: \(S(p^n)=2(0+1+2+..+9)=90\vdots 3\) trong đó \(S(p^n)\) là tổng các chữ số của $p^n$

Vì \(S(p^n)\vdots 3\Rightarrow p^n\vdots 3\). Điều này hoàn toàn vô lý do \(p>3, p\in\mathbb{P}\)

Do đó giả sử sai. Tức là tồn tại ít nhất 3 số trong 20 chữ số của $p^n$ giống nhau.

15 tháng 4 2019

Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r

\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)

 Với a ; b; c \(\in\)N  và  \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)

Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)

N nhỏ nhất nên \(N=2^2.5.13=260\)

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

6
14 tháng 7 2016

nhìn là hết muốn làm

14 tháng 7 2016

sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ

Nhìn là muốn chạy rùi

^-^

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

7
11 tháng 8 2015

đăng giết người à           

11 tháng 8 2015

Nhìn là hết muốn làm.

27 tháng 3 2016

3)+giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744

27 tháng 3 2016

2)

a

v

à

b

l

n

ê

n

a

=

2k+1,

b

=

2m+1

(V

i

k,

m

N)

a

2

+

b

2

=

(2k+1)

2

+

(2m+1)

2

=

4k

2

+

4k

+

1

+

4m

2

+

4m

+

1

=

4(k

2

+

k

+

m

2

+

m)

+

2

=

4t

+

2

(V

i

t

N)

Kh

ô

ng

c

ó

s

ch

í

nh

ph

ươ

ng

n

à

o

c

ó

d

ng

4t

+

2

(t

N)

do

đó

a

2

+

b

2

kh

ô

ng

th

l

à

s

ch

í

nh

ph

ươ

ng

Mn giúp mik bt Tin Học với ạ..! Mn lm đc bài nào thì làm nha ...!Câu 1 (7,0 điểm): Số chính phương.Cho trước số nguyên dương N (0< N≤ 106 ). Yêu cầu: Tìm số nguyên dương K nhỏ nhất sao cho tích của K và N là một số chính phương. Dữ liệu vào: File CP.INP chứa số N. Dữ liệu ra: File CP.OUT ghi số nguyên K tìm được.Câu 2 (6,0 điểm): Dòng lớn nhất.Cho một tệp tin gồm nhiều dòng. Trên mỗi dòng chứa...
Đọc tiếp

Mn giúp mik bt Tin Học với ạ..! Mn lm đc bài nào thì làm nha ...!

Câu 1 (7,0 điểm): Số chính phương.

Cho trước số nguyên dương N (0< N≤ 106 ). Yêu cầu: Tìm số nguyên dương K nhỏ nhất sao cho tích của K và N là một số chính phương. Dữ liệu vào: File CP.INP chứa số N. Dữ liệu ra: File CP.OUT ghi số nguyên K tìm được.

Câu 2 (6,0 điểm): Dòng lớn nhất.

Cho một tệp tin gồm nhiều dòng. Trên mỗi dòng chứa một xâu kí tự chỉ gồm các kí tự chữ cái và chữ số, độ dài của mỗi xâu không quá 255 kí tự.

Yêu cầu: Đưa ra dòng có nhiều kí tự chữ cái nhất, nếu có nhiều dòng thỏa mãn thì đưa ra dòng đầu tiên có nhiều kí tự chữ cái nhất. Dữ liệu vào: File DLN.INP gồm:

+ Dòng đầu ghi số N là số lượng dòng chứa các xâu kí tự.

+ N dòng tiếp theo: mỗi dòng ghi một xâu kí tự. Dữ liệu ra: File DLN.OUT ghi ra dòng có nhiều kí tự chữ cái nhất, nếu có nhiều dòng thỏa mãn thì đưa ra dòng đầu tiên có nhiều kí tự chữ cái nhất.

Câu 3 (4,0 điểm): Dãy con đối xứng.

Một dãy số liên tiếp gọi là dãy đối xứng nếu đọc các số theo thứ tự từ trái sang phải cũng giống như khi đọc theo thứ tự từ phải sang trái. Cho dãy số A gồm N số nguyên dương: a1, a2,..., aN (1≤ N≤ 10000; 1≤ ai≤ 32000; 1≤ i≤ N)

Yêu cầu: Hãy tìm dãy con đối xứng dài nhất của dãy A. Nếu có nhiều dãy con thoả mãn thì lấy dãy con xuất hiện đầu tiên trong dãy A. Dữ liệu vào: File DX.INP gồm 2 dòng:

- Dòng 1: ghi số nguyên dương N.

- Dòng 2: ghi N số nguyên dương lần lượt là giá trị của các số trong dãy A, các số được ghi cách nhau ít nhất một dấu cách.

Dữ liệu ra: File DX.OUT ghi dãy tìm được trên cùng một dòng, các số được ghi cách nhau một dấu cách.

Câu 4 (3,0 điểm): Dãy nguyên tố.

Cho một dãy số B gồm n số nguyên dương (n ≤ 1000), mỗi phần tử trong dãy có giá trị không quá 30000. Yêu cầu:

+ Tìm dãy con dài nhất (liên tiếp hoặc không liên tiếp) các phần tử là những số nguyên tố có giá trị tăng dần của dãy B và thứ tự của các phần tử không đổi so với ban đầu. Ví dụ: Dãy 8 phần tử {4, 2, 5, 6, 3, 3, 7, 9} có dãy con nguyên tố tăng dài nhất là {2, 5, 7}.

+ Nếu có nhiều dãy con thoả mãn thì lấy dãy con xuất hiện đầu tiên trong dãy B. Dữ liệu vào: File NT.INP gồm 2 dòng:

- Dòng 1: Ghi số nguyên dương n.

- Dòng 2: Ghi n số nguyên dương, các số được ghi cách nhau một dấu cách. Dữ liệu ra: File NT.OUT ghi dãy con tìm được trên cùng 1 dòng, giữa 2 phần tử liền kề trong dãy có một dấu cách.

0