K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
16 tháng 7 2021

Đặt \(2n+1=a^2,3n+1=b^2\).

\(15n+8=9\left(2n+1\right)-\left(3n+1\right)=9a^2-b^2=\left(3a-b\right)\left(3a+b\right)\)

Hiển nhiên \(3a+b>1\).

Nếu \(3a-b=1\Rightarrow b+1⋮3\).

mà \(b^2\equiv1\left(mod3\right)\Leftrightarrow b\equiv1\left(mod3\right)\Leftrightarrow b\equiv2\left(mod3\right)\)mâu thuẫn

do đó \(3a-b\ne1\).

Do đó \(15n+8\)là hợp số. 

3 tháng 4 2020

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

3 tháng 4 2020

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

25 tháng 7 2016

cm phản chứng

4 tháng 10 2019

Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath

=> \(n+2=p^2\) là số chính phương.

4 tháng 10 2019

ta có p^2=(m+n)(m-1)

vì m+n>m-1

>0

m

+n=p^2

m-1=1

suy ra m=2=>n+2=p^2 là số chính phuopwng

25 tháng 5 2021

Do 2n+1 là số chính phương lẻ nên 2n+1 : 8 dư 1

=> 2n chia hết cho 8

=> n chia hết cho 4

=> n chẵn

=> 3n chẵn

=> 3n+1 lẻ

=> 3n+1 chia 8 dư 1

=> 3n chia hết cho 8

=> n chia hết cho 8    (1)

Có: 3n+1 là số chính phương => 3n+1 chia 5 dư 0;1;4

=> 3n chia 5 dư 4;3 hoặc chia hết cho 5

=> n chia 5 dư 3;1 hoặc chia hết cho 5

- Xét n : 5 dư 3 => 2n+1 chia 5 dư 2 (Loại)

- Xét n : 5 dư 1 => 2n+1 chia 5 dư 3 (Loại)

- Xét n chia hết cho 5 => 2n+1 chia 5 dư 1 (Thỏa mãn)

=> n chia hết cho 5   (2)

Từ (1) và (2) suy ra n chia hết cho 40

Ta tìm được n=40 để 2n+1 và 3n+1 đều là số chính phương

P/s: Vậy n=40 chỉ là số nguyên dương nhỏ nhất thỏa mãn đề bài

a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :

TH1 : \(2n-1=3u^2;2n+1=v^2\)

TH2 : \(2n-1=u^2;2n+1=3v^2\)

TH1 :

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )

Còn lại TH2 cho ta \(2n-1\)là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)

TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )

13 tháng 4 2021

Cho mình hỏi ở chỗ câu b): Vì sao 2n-1=3p^2 và 2n+1=q^2 vậy ạ?

23 tháng 6 2021

undefined