Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : ý b cm chia hết cho 55 chứ ko phải 35 nhé
a ) \(5^{2000}+5^{1998}=5^{1998}\left(5^2+1\right)=5^{1998}.26=5^{1998}.13.2⋮13\) (đpcm)
b ) \(7^{2016}+7^{2015}-7^{2014}=7^{2014}\left(7^2+7-1\right)=7^{2014}.55⋮55\) (đpcm)
Xét hiệu: (a3 + b3 + c3) ‐ (a + b + c) = a3 + b3 + c3 ‐ a ‐ b ‐ c = (a3‐ a) + (b3 ‐ b) + (c3 ‐ c)= a(a2‐ 1) + b(b2 ‐ 1)+ c(c2-1)= a(a ‐ 1)(a + 1)+ b(b ‐ 1)(b + 1) + c(c ‐ 1)(c + 1)
a(a ‐ 1)(a + 1) là tích 3 số tự nhiên liên tiếp nên a(a ‐ 1)(a + 1) chia hết cho 2 và 3
=> a(a ‐ 1)(a + 1) chia hết cho 6
Tương tự b(b ‐ 1)(b + 1) chia hết cho 6
c(c ‐1)(c + 1) chia hết cho 6
=>(a3 + b3 + c3 ) ‐ (a + b + c) chia hết cho 6
Mà 1998 chia hết cho 6 nên a + b + c chia hết cho 6 =>a3+ b3 + c3 chia hết cho 6
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
ta có 3^1998 đồng dư với 0 (mod 3)
và 5 đồng dư với -1 (mod3) => 5^1998 đồng dư với 1 (mod 3) ( vì 1998 chẵn)
=> 3^1998+5^1998 đồng dư với 0+1 (mod 3 ) => đồng dư với 1 ( mod3 )
Vậy 3^1998+5^1998 chia 3 dư 1
Theo đề bạn viết, mình hiểu là $1218^{a+1}\vdots 1218^b$
Mà điều này suy ra $a+1\geq b$ chứ không nhất thiết $a\vdots b$
3. \(1998=a_1+a_2+a_3\) với \(a,b,c\in N\)
Xét hiệu \(\left(a_1^3+a_2^3+a_3^3\right)-\left(a_1+a_2+a_3\right)\)
\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+\left(a_3^3-a_3\right)\)
\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+a_3\left(a_3^2-1\right)\)
\(=\left(a_1-1\right).a_1.\left(a_1+1\right)+\left(a_2-1\right).a_2.\left(a_2+1\right)+\left(a_3-1\right).a_3.\left(a_3+1\right)\)
Dễ thấy mỗi số hạng là tích 3 số tự nhiên liên tiếp nên ắt tồn tại 1 số chia hết cho 2 và 1 số chia hết cho 3
=> Mỗi số hạng chia hết cho 6
=> Hiệu \(\left[\left(a_1^3+a_2^3+a_3^3\right)-\left(a_1+a_2+a_3\right)\right]⋮6\)
Hay \(\left(a_1^3+a_2^3+a_3^3\right)\) và \(\left(a_1+a_2+a_3\right)\) có cùng số dư khi chia cho 6
=> \(\left(a_1^3+a_2^3+a_3^3\right)\) và 1998 có cùng số dư khi chia cho 6
Nên \(\left(a_1^3+a_2^3+a_3^3\right)⋮6\)
A chia hết cho 13
A+B=11x+29y+2x-3y=13x-26y chia hết cho 13
=>B chia hết cho 13
B chia hết cho 13
A+B chia hết cho 13
=>A chia hết cho 13