K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

a)2017^2018 có tận cùng là 9

b)Khi 2017^2018 chia cho 5 thì dư 4

22 tháng 10 2017

có : (2016-2) : 2 +1 = 1008 số chia hết cho 2

tổng các số chia hết cho 2 là : (2016+2) . 1008 : 2 =1 017 072 chia hết cho 2 vì có c\s tận cùng là 2

                                                                                  1 017 072 không chia hết cho 5 vì không có c\s tận cùng là 0 hoặc 5

22 tháng 10 2017

a, có 1008 số chia hết cho 2 

     có bốn trăm linh ba số chia hết cho 5

b, tổng của số chia hết cho 2 có chia hết cho 2

     ____________________5____________5

nếu như bạn muốn biết cách làm thì mình chỉ cho:bạn sử dụng công thức tính số số hạng và tổng ở trong SGK toán 

22 tháng 7 2016

Bài 2

a)Ta có:\(2001^{2002}+2002^{2003}\)

          =\(\left(.....1\right)+2002^{2000}.2002^3\)

          =\(\left(.....1\right)+\left(....6\right).\left(.....8\right)\)

          =\(\left(.....9\right)\)không chia hết cho 2

b)Ta có:\(861^7+972^2\)

          =\(\left(.....1\right)+\left(......4\right)\)

          =\(\left(......5\right)\)chia hết cho 5

           

9 tháng 12 2019

Ta có : S=22020+22019+22018+22017+22016+22015+22014+22013

              =22013(27+26+25+24+23+22+2+1)

             =22013.255

Vì 255\(⋮\)15 nên 22013.255\(⋮\)15

hay S\(⋮\)15

Vậy S\(⋮\)15.

13 tháng 4 2019

\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)

Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)

\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)

Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)

Vậy A>B

21 tháng 6 2019

#)Giải :

\(S=3+3^2+3^3+...+3^{2019}\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)

\(S=3\left(1+3+9\right)+3^2\left(1+3+9\right)+...+3^{2017}\left(1+3+9\right)\)

\(S=13\left(3+3^3+...+3^{2017}\right)\)chia hết cho 3 ( đpcm )

s = 3^1 +3^2 + 3^3 +....+ 3^2017 + 3^2018 + 3^2019

= ( 3^1 +3^2 + 3^3) +...+ ( 3^2017 + 3^2018 + 3^2019 )  (  2019 : 3 =673 # chia hết nên có thể ghép cặp như vậy)

= 3( 1+ 3 +3^2 )+ 3^4(  1+ 3 +3^2)+...+ 3^2017( 1+ 3 +3^2) ( háp dụng tính chất phân phối)

= 13( 3+ 3^4+....+3^2017) => chia hết cho 13

học tốt

21 tháng 6 2019

#)Giải :

\(S=3+3^2+3^3+...+3^{2019}\)

\(\Rightarrow3S=3^2+3^3+3^4+...+3^{2020}\)

\(\Rightarrow3S-S=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+...+3^{2019}\right)\)

\(\Rightarrow2S=3^{2020}-3\)

\(\Rightarrow S=\frac{3^{2020}-3}{2}\)

21 tháng 6 2019

từng số hạng của tổng S chia hết cho 3 nên tổng S chia hết cho 3