Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
suy ra: (b+d+g) - (a+c+e) chia hết cho 11
suy ra : /abcdeg chia hết cho 11
2.
abcdeg = abc.1000+deg = abc.994 +abc.6 +deg
= abc.994 + abc.6 - 6deg +7deg =abc.994 + 6.(abc - deg) +7deg
Vì abc.994=abc.7.142 chia hết cho 7
abc - deg chia hết cho 7 =>6.(abc - deg ) chia hết cho 7
7.deg chia hết cho 7
Từ 3 ý trên =>abc.994 +6.(abc - deg) + 7deg chia cho 7
vậy abcdeg chia hết cho 7
Câu hỏi của Linhtsuki - Toán lớp 6 - Học toán với OnlineMath
Em xem bài làm tại link này nhé!
Ta có:10^28+8=100...008 (27 chữ số 0)
Xét 008 chia hết cho 8 =>10^28+8 chia hết cho 8 (1)
Xét 1+27.0+8=9 chia hết cho 9=>10^28+8 chia hết cho 9 (2)
Mà (8,9)=1 (3).Từ (1),(2),(3) =>10^28+8 chia hết cho (8.9=)72
Nếu chưa học thì giải zầy:
10^28+8=2^28.5^28+8
=2^3.2^25.5^28+8
=8.2^25.5^28+8 chia hết cho 8
Mặt khác:10^28+8 chia hết cho 9(chứng minh như cách 1) và(8,9)=1
=>10^28+8 chia hết cho 8.9=72
abcdeg = ab . 10000 + cd .100 + eg
= (ab . 9999 + cd . 99) +( ab + cd + eg)
= 11. (ab . 909 + cd . 9) +( ab + cd + eg)
Ta thấy 11. (ab . 909 + cd . 9) chia hết cho 11
mà theo bài ra ab + cd + eg
Chia hết cho 11
Vậy nên: 11. (ab . 909 + cd . 9) +( ab + cd + eg) hay abcdeg
Vì 11\(⋮\)11
Vậy...
Vậy
1. a, Gọi số cần tìm là \(\overline{abc}\).
Để \(\overline{abc}⋮2\) <=> c = 6; 0
Vậy các số cần tìm là 650; 560; 506.
b, Để \(\overline{abc}⋮5\) <=> c = 5
Vậy số cần tìm là 605.
@Thu Dieu
Gọi số cần tìm là \(\overline{aa}\).
Do \(\overline{aa}⋮2\Leftrightarrow\overline{aa}\) = 22; 44; 66; 88.
Ta có : 22 - 4 = 18 không chia hết cho 5 (loại)
44 - 4 = 40 chia hết cho 5 (chọn)
66 - 4 = 62 không chia hết cho 5 (loại)
88 - 4 = 84 không chia hết cho 5 (loại)
Vậy số cần tìm là 44.
@Thu Dieu
Đặt 155*710*4*16=A
=>A chia hết cho 396
mà(4,9,11)=396
và [4,9,11]=396
=> A chia hết cho cả 4, 9 và 11.
+) Để A chia hết cho 4
=> 2 chữ số tận cùng của A hợp thành 1 số chia hết cho 4
mà 16 chia hết cho 4
=>A chia hết cho 4 với mọi n thuộc {1;2;3} (1)
+) Để A chia hết cho 9
=>1+5+5+*+7+1+0+*+4+*+1+6 chia hết cho 9
hay 30+*+*+* chia hết cho 9
mà * thuộc {1;2;3}
=>*+*+*=1+2+3=6
=>30+*+*+*=30+6=36 chia hết cho 9
=>A chia hết cho 9 vói mọi n thuộc {1;2;3} (2)
Để A chia hết cho 11
=>1+5+7+0+4+1-(5+*+1+*+*+6)
=>18-(12+*+*+*)
mà *+*+*=6
=>12+*+*+*=12+6=18
=>18-(12+*+*+*)=18-18=0 chia hết cho 11
=>A chia hết cho 11 với mọi * thuộc {1;2;3} (3)
Từ (1) ; (2) và (3):
=>A chia hết cho cả 4; 9 và 11 với mọi * thuộc {1;2;3}.
=>A chia hết cho 396 với mọi * thuộc {1;2;3}. (đpcm)