Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin\left(x-\dfrac{\pi}{2}\right)+cos\left(x-\pi\right)+tan\left(\dfrac{5\pi}{2}-x\right)+tan\left(x-\dfrac{\pi}{2}\right)\)
\(=-sin\left(\dfrac{\pi}{2}-x\right)+cos\left(\pi-x\right)+tan\left(2\pi+\dfrac{\pi}{2}-x\right)-tan\left(\dfrac{\pi}{2}-x\right)\)
\(=-cosx-cosx+tan\left(\dfrac{\pi}{2}-x\right)-cotx\)
\(=-2cosx+cotx-cotx=-2cosx\)
1+cot^2x=1/sin^2x
=>1/sin^2x=3/2
=>sin^2x=2/3
mà sin x<0
nên sin x=căn 2/3
\(sinx+cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
\(=\sqrt{2}cos\left(\frac{\pi}{2}-\left(x+\frac{\pi}{4}\right)\right)=\sqrt{2}cos\left(\frac{\pi}{4}-x\right)=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)
\(sinx-cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx-\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)
\(=-\sqrt{2}sin\left(\frac{\pi}{4}-x\right)=-\sqrt{2}cos\left(\frac{\pi}{2}-\left(\frac{\pi}{4}-x\right)\right)=-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(sin^4x-cos^4x=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x\)
\(=sin^2x-cos^2x+sin2x=sin2x-cos2x\)
\(=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)\)
Bạn ghi ko đúng đề
pi/2<x<pi
=>cosx<0
1+tan^2x=1/cos^2x
=>1/cos^2x=5
=>cosx=-1/căn 5
=>sin x=2/căn 5
\(\frac{sin2x-cosx}{2sinx-1}+sinx=\frac{2sinx.cosx-cosx}{2sinx-1}+sinx\)
\(=\frac{cosx\left(2sinx-1\right)}{2sinx-1}+sinx=cosx+sinx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
Bài 1 :
Ta có : a thuộc góc phần tư thứ II .
=> Cos a < 0
- Ta lại có : \(\left\{{}\begin{matrix}sina=\dfrac{1}{3}\\sin^2a+cos^2a=1\end{matrix}\right.\)
\(\Rightarrow cosa=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=-\dfrac{2\sqrt{2}}{3}\)
Bài 2 :
Ta có : \(F=\dfrac{\cos x.\tan x}{\sin^2x-\cot x.\cos x}=\dfrac{\cos x.\dfrac{\sin x}{\cos x}}{\sin^2x-\dfrac{\cos x}{\sin x}.\cos x}\)
\(=\dfrac{\sin x}{\sin^2x-\dfrac{\cos^2x}{\sin x}}=\dfrac{1}{\sin x-\cot^2x}\)
\(sin^8x-cos^8x-4sin^6x+6sin^4x-4sin^2x\)
\(=sin^8x-\left(1-sin^2x\right)^4-4sin^6x+6sin^4x-4sin^2x\)
\(=sin^8x-\left(1-4sin^2x+6sin^4x-4sin^6x+sin^8x\right)-4sin^6x+6sin^4x-4sin^2x\)\(=-1\) (bạn chép nhầm đề)
b/ \(\frac{sin6x+sin2x+sin4x}{1+cos2x+cos4x}=\frac{2sin4x.cos2x+sin4x}{1+cos2x+2cos^22x-1}=\frac{sin4x\left(2cos2x+1\right)}{cos2x\left(2cos2x+1\right)}=\frac{sin4x}{cos2x}=\frac{2sin2x.cos2x}{cos2x}=2sin2x\)
c/ \(\frac{1+sin2x}{cosx+sinx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{sin^2x+cos^2x+2sinx.cosx}{cosx+sinx}-\left(1-tan^2\frac{x}{2}\right)cos^2\frac{x}{2}\)
\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)=sinx+cosx-cosx=sinx\)
d/ \(cos4x+4cos2x+3=2cos^22x-1+4cos2x+3\)
\(=2\left(cos^22x+2cos2x+1\right)=2\left(cos2x+1\right)^2=2\left(2cos^2x-1+1\right)^2=8cos^4x\)
e/
A = 2cosx + 3cos(π - x) - sin\(\left(2\pi-\dfrac{\pi}{2}-x\right)+tan\left(4\pi-\dfrac{\pi}{2}-x\right)\)
A = 2cosx - 3cosx + sin\(\left(\dfrac{\pi}{2}+x\right)-tan\left(\dfrac{\pi}{2}+x\right)\)
A = -cosx + cosx + cotx
A = cotx
\(\frac{\pi}{2}< x< \pi\Rightarrow cosx\ne0\)
\(\left(sinx+2cosx\right)^2=1\Rightarrow sin^2x+4cos^2x+4sinx.cosx=1\)
\(\Rightarrow3cos^2x+4sinx.cosx=0\)
\(\Rightarrow3cosx+4sinx=0\)
Kết hợp điều kiện ban đầu ta được:
\(\left\{{}\begin{matrix}sinx+2cosx=-1\\4sinx+3cosx=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sinx=\frac{3}{5}\\cosx=-\frac{4}{5}\end{matrix}\right.\)
\(\Rightarrow sin2x=2sinx.cosx=-\frac{24}{25}\)