K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

S=1/1-1/4+1/4+1/7-1/7+1/10+...+1/100-1/103

S=1/1-1/103

S=102/103

Vì 102/103<1 nên S<1

14 tháng 8 2018

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{100\cdot103}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)

\(S=1-\frac{1}{103}\)

\(S=\frac{102}{103}< 1\)

mk đang cần gấp

31 tháng 8 2020

\(D=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)

\(D=1-\frac{1}{100}\)

\(D=\frac{99}{100}\)

8 tháng 7 2019

\(D=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)

\(D=\frac{2}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\)

\(D=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(D=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

\(D=\frac{2}{3}\cdot\frac{99}{100}=\frac{33}{50}\)

8 tháng 7 2019

Em cảm ơn chị

21 tháng 7 2016

1.      \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(=1-\frac{1}{43}\)

\(=\frac{42}{43}\)

2.     Đặt \(A=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{90}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=2.\left(1-\frac{1}{10}\right)\)

\(=2.\frac{9}{10}\)

\(=\frac{9}{5}\)

Ủng hộ mk nha !!! ^_^

21 tháng 7 2016

1) 3/1×4 + 3/4×7 + 3/7×10 + ... + 3/40×43

= 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/40 - 1/43

= 1 - 1/43

= 42/43

2) 2/2 + 2/6 + 2/12 + ... + 2/90

= 2 × (1/2 + 1/6 + 1/12 + ... + 1/90)

= 2 × (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/9×10)

= 2 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10)

= 2 × (1 - 1/10)

= 2 × 9/10

= 9/5

30 tháng 5 2019

1/1*4 + 1/4*7 + 1/7*10 + ... + 1/97*100

= 1/3(3/1*4 + 3/4*7 + 3/7*10 + ... + 3/97*100)

= 1/3(1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100)

= 1/3(1 - 1/100)

= 1/3*99/100

= 33/100

trả lời 

=33/100

chúc bn

học tốt

7 tháng 6 2018

\(=\frac{1}{3}x\left(\frac{3}{1x4}+\frac{3}{4x7}+...+\frac{3}{77x80}\right)\)

\(=\frac{1}{3}x\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}x\left(\frac{1}{1}-\frac{1}{80}\right)\)

\(=\frac{1}{3}\times\frac{79.}{80}\)

\(=\frac{79}{240}\)

Tk giúp mk nha cảm ơn !!

7 tháng 6 2018

\(=\frac{79}{240}\)

30 tháng 6 2017

Đặt  \(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+......+\frac{2}{100\cdot103}\)

\(B=\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{2}{3}\cdot\left(1-\frac{1}{103}\right)\)

\(B=\frac{2}{3}\cdot\frac{102}{103}\)

\(\Rightarrow B=\frac{68}{103}\)

30 tháng 6 2017

Đặt \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)

\(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(A=\frac{2}{3}\left(1-\frac{1}{103}\right)\)

\(A=\frac{2}{3}\cdot\frac{102}{103}\)

\(A=\frac{68}{103}\)

6 tháng 6 2019

\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)

\(=\frac{11}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(=\frac{11}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=\frac{11}{3}\left(1-\frac{1}{103}\right)\)

Tự tính

6 tháng 6 2019

\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)

\(\frac{11}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(\frac{11}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(\frac{11}{3}.\left(1-\frac{1}{103}\right)\)

\(\frac{11}{3}.\frac{102}{103}\)

\(\frac{374}{103}\)

31 tháng 5 2018

Dấu \(.\)là dấu nhân 

Ta có : 

\(E=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)

\(\Rightarrow E=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{2}{100.103}\right)\)

\(\Rightarrow E=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(\Rightarrow E=\frac{2}{3}.\left(1-\frac{1}{103}\right)\)

\(\Rightarrow E=\frac{2}{3}.\frac{102}{103}\)

\(\Rightarrow E=\frac{68}{103}\)

Vậy \(E=\frac{68}{103}\)

~ Ủng hộ nhé 

31 tháng 5 2018

\(E=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+...+\frac{2}{100\cdot103}\)

\(E=2\cdot\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{100\cdot103}\right)\)

Gọi tổng trong ngoặc là F

\(\Rightarrow3F=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{100\cdot103}\)

\(\Rightarrow3F=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)

\(\Rightarrow3F=1-\frac{1}{103}=\frac{102}{103}\)

\(\Rightarrow F=\frac{102}{103\cdot3}=\frac{34}{103}\)

\(\Leftrightarrow E=2\cdot\frac{34}{103}=\frac{68}{103}\)

Vậy......

3 tháng 10 2014

Bài này giống toán lớp 6 hơn

m = 3/(1x4) + 3/(4x7) +  ... + 3/(19x22)

    = (4-1)/(1x4) + (7-4)/(4x7) +  ... + (22-19)/(19x22)

    = 4/(1x4) - 1/(1x4) + 7/(4x7) - 4/(4x7) + ... +  22/(19x22) - 19/(19x22)

    = 1 - 1/4 + 1/4 - 1/7 + ... + 1/19 - 1/22

    = 1-1/22

    = 21/22

7 tháng 5 2016
nếu tử là 2 thì làm sao