K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

\(\frac{1}{4^2}>0;\frac{1}{5^2}>0;...;\frac{1}{50^2}>0\Rightarrow S>0\)

\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)

\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}< \frac{1}{3}-\frac{1}{50}\)

\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}< \frac{47}{150}< 1\)

=> 0 < S < 1 => S không phải số nguyên

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

7 tháng 4 2017

\(S=\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+..+\frac{1}{50^2}\right)\)

Xét \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(A< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A< \frac{1}{2}-\frac{1}{50}< \frac{1}{2}\)

\(=>A< \frac{1}{2}\)

=>\(S=\frac{1}{4}+A< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)

vậy S<3/4

8 tháng 3 2017

a) Ta có:

\(\frac{6}{15}+\frac{6}{16}+...+\frac{6}{19}>\frac{6}{19}.5=\frac{30}{19}>1\)

\(\Rightarrow S>1\)

Ta lại có:

 \(\frac{6}{15}+\frac{6}{16}+...+\frac{6}{19}< \frac{6}{15}.5=\frac{30}{15}=2\)

\(\Rightarrow S< 2\)

Vậy, 1 < S < 2

b) \(1< S< 2\Rightarrow S\notin Z\)

12 tháng 1 2019

1 < S < 2

=> S ko phải là số tự nhiên

11 tháng 6 2020

1< S< 2

=> S không phải số tự nhiên

22 tháng 7 2019

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

22 tháng 7 2019

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

4 tháng 2 2020

Bài 1 :

Ta có : \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Ta chứng minh BĐT \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Thật vậy : BĐT \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\) ( đúng )

Vậy \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Áp dụng vào bài toán ta có : \(S\ge2+2+2=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy min \(S=6\) tại \(a=b=c\)

7 tháng 7 2017

S không phải là số tự nhiên vì \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{481}{280}\)nên không thể đổi thành số tự nhiên mà chỉ có thể đổi thành số thập phân đó là 1,717857143

Vậy h cho mình nha Trần Phúc Đông

7 tháng 7 2017

Ta có

\(\frac{1}{2}+\frac{2}{4}+\frac{4}{8}< S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}< \frac{1}{2}+\frac{3}{3}+\frac{3}{6}.\)

\(\Leftrightarrow1< S< 2\)

\(\Rightarrow S\notin N\)