Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
a) S = 1 + 5 + 5^2 + ... + 5^20
S = (1 + 5) + (5^2 + 5^3) + ... + (5^18 + 5^19) + 5^20
S = (1 + 5) + 5^2.(1 + 5) + ... + 5^18.(1 + 5) + 5^20
S = 6 + 5^2.6 + ... + 5^18.6 + 5^20
S = 6.(1 + 5^2 + ... + 5^18) + 5^20
Mà 6.(1 + 5^2 + ... + 5^18) chia hết cho 6 mà 5^20 có chữ số tận cùng là 5, là số lẻ nên không chia hết 6.
Vậy S không chia hết cho 6
b) S = 1 + 5 + 5^2 + ... + 5^20
S = (1 + 5 + 5^2) + ... + (5^18 + 5^19 + 5^20)
S = (1 + 5 + 5^2) + ... + 5^18.(1 + 5 + 5^2)
S = 31 + ... + 5^18.31
S = 31.(1 + ... + 5^18) chia hết cho 31 => S chia hết cho 31.
2. a) abab : ab = (100ab + ab) : ab = 100ab : ab + ab : ab = 100 + 1 = 101.
b) abcabc : abc = (1000abc + abc) : abc = 1000abc : abc + abc : abc = 1000 + 1 = 1001.
Bài 2:
Ta có: (x-3)(x+4)>0
=>x>3 hoặc x<-4
Bài 3:
a: \(5S=5-5^2+...+5^{99}-5^{100}\)
\(\Leftrightarrow6S=1-5^{100}\)
hay \(S=\dfrac{1-5^{100}}{6}\)
a)
S bằng 1+5+52+53+...+520
S bằng 1+(5+52)+(53+54)+...+(519+520)
S bằng 1+5.(1+5)+53.(1+5)+...+519.(1+5)
S bằng 1+5.6+53.6+...+519.6
S bằng 1+6.(5+53+...+519)
Suy ra S chia cho 6 dư 1.
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
s chia hết cho 25 vì trong thừa số của s có 25 đó là 5^2
s không chia hết cho 31 vì trong thừa số của s không có 31