Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A =\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
\(=99-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)\)
Đặt B = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)
>\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{2}-\frac{1}{101}=\frac{99}{202}\)
Khi đó A = \(99-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)< 99-\frac{99}{202}\approx98,5\)
=> A < 98,5 (1)
Lại có B = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Khi đó A =\(99-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)>99-\frac{99}{100}=98,01\)
=> A > 98,01 (2)
Từ (1)(2) => 98,01 < A < 98,5
=> A không là số nguyên
Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo nhé!
\(x=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(x=\frac{1.3}{2.2}+\frac{2.4}{3.3}+\frac{3.5}{4.4}+...+\frac{99.101}{100.100}\)
\(x=\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}\)
\(x=\frac{1}{100}.\frac{101}{2}\)
\(x=\frac{101}{200}\)
\(X=\frac{1.3}{2.2}+\frac{2.4}{3.3}+\frac{3.5}{4.4}+...+\frac{99.101}{100.100}\)
\(X=\frac{1.2.3....99}{2.3.4....100}.\frac{3.4.5....101}{2.3.4....100}\)
\(X=\frac{1}{100}.\frac{101}{2}\)
\(X=\frac{101}{200}\)
Study well
chịu mẹ kiếp toán 7 cho vào đề kiểm tra toán 6 ai mà lm dc
=1-1/4+1-1/9+1-1/16+...+1-1/10000
=(1+1+1+...+1)+(-1/4-1/9-1/16-...-1/10000)
=99+(-1/4-1/9-1/16-...-1/10000)
Vì 99+(-1/4-1/9-1/16-...-1/10000)>98
=>C>98
Vây C>98
Ta thấy các phân số của tổng S khi quy đồng mẫu số chứa lũy thừa của 2 với số mũ lớn nhất là 24
Như vậy, khi quy đồng mẫu số, các phân số của S đều có tử chẵn, chỉ có phân số \(\frac{1}{16}\) có tử lẻ
Do đó S có tử lẻ mẫu chẵn, không là số tự nhiên (đpcm)
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+......+\frac{9999}{10000}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+.......+\left(1-\frac{1}{10000}\right)\)
\(=\left(1+1+.....+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.....+\frac{1}{10000}\right)\)
\(=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.......+\frac{1}{10000}\right)\)( số các chữ số 1 bằng căn bậc 2 của mẫu rồi trừ đi 1 )
Đặt \(A=\frac{1}{4}+\frac{1}{9}+.........+\frac{1}{10000}\)
Ta có: \(4=2.2< 2.3\)\(\Rightarrow\frac{1}{4}>\frac{1}{2.3}\)
Tương tự ta có: \(\frac{1}{9}>\frac{1}{3.4}\); ........ ; \(\frac{1}{10000}>\frac{1}{100.101}\)
\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{100.101}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{2}-\frac{1}{101}=\frac{99}{202}\)
Ta lại có: \(4=2.2>1.2\)\(\Rightarrow\frac{1}{4}< \frac{1}{1.2}\)
Tương tự ta được: \(\frac{1}{9}< \frac{1}{2.3}\); ......... ; \(\frac{1}{10000}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{100.101}\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow\frac{99}{202}< A< \frac{99}{100}\)\(\Rightarrow\)A không phải là số nguyên
\(\Rightarrow99-A\)không là số nguyên \(\Rightarrow\)S không là số nguyên ( đpcm )
\(Ta\) \(có\) :
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
\(Đặt\) \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Do A > 0 nên S < 99 (1)
Do A\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}\)
Suy ra \(S=99-A>99-\left(1-\frac{1}{100}\right)\)
\(\Rightarrow S>98+\frac{1}{100}\Rightarrow S>98\) (2)
Lập luận ra điều phải chứng minh
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(\Rightarrow S=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(\Rightarrow S=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{10000}\)
\(\Rightarrow S=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
\(\Rightarrow S=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)< 99.\)
\(\Rightarrow S< 99\) (1).
Đặt \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có:
\(\left\{{}\begin{matrix}\frac{1}{2^2}< \frac{1}{1.2}\\\frac{1}{3^2}< \frac{1}{2.3}\\....\\\frac{1}{100^2}< \frac{1}{99.100}\end{matrix}\right.\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}\)
Vì \(1-\frac{1}{100}< 1.\)
\(\Rightarrow A< 1.\)
\(\Rightarrow S>99-1\)
\(\Rightarrow S>98\) (2).
Từ (1) và (2) \(\Rightarrow98< S< 99.\)
\(\Rightarrow S\) không phải là số nguyên (đpcm).
Chúc bạn học tốt!