Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chiu roi
ban oi
tk nhe@@@@@@@@@@@@@
xin do
ai tk minh minh tk lai
Ta có :
S=abc+bca+cab
suy ra :S= (100a+10b+c) + 9100b+10c+a0 + 9100c+10a+b)
suy ra S= 111a+11b+111c
suy ra S= 111(1+b+c)=37.39 (a+b+c)
Gỉa sử S là số chính phương thì S phải chứa thừa số nguyên tó 37 vs số mũ chẵn nên
3(a+b+c) chia hết cho 37
suy ra : a+b+c chia hết cho 37
Điều này ko xáy ra vì :1< a+b+c lớn hơn hoặc bằng 27
Vậy S =abc+bca+cab ko hả là só chính phương
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 và 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
tick nha bạn
Ta có :abc + bca + cab = 111a+ 111b+111c=111(a+b+c)= 3.37.(a+b+c)
Vì SCP chứa các thừ số ng tố với số mũ chẵn nên 3. 37.(a+b+c)=3.37.k^2
Vô lí vì 3<a+b+c<27
Vậy , abc+bca+cba ko là số chính phương.
1li-ke nha ! > . < !
mình ko hiểu cách giải này của bạn ở cái chỗ bạn bảo vô lý đó
Chứng minh rằng tổng sau không là số chính phương
A = abc + bca + cab
abc và bca và cab là số tự nhiên
A = abc + bca + cab
=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>A = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
=> A = 111a + 111b + 111c
=> A= 111( a+b+c )= 37 . 3( a+b + c)
giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c) chia hết 37
=> a+b+c chia hết cho 37
Điều này không xảy ra vì 1 \(\le\) a + b + c \(\le\) 27
A = abc + bca + cab không phải là số chính phương
S = 100a+10b+c + 100b+10c+a + 100c+10a+b = 111(a+b+c) = 3.37(a+b+c)
=> Để S là số chính phương thì a+b+c = 3.37 = 111
mà 10 > a,b,c > 0 => Max(a+b+c) = 9+9+9 = 27 < 111
Vậy S không phải số chính phương
lưu ý điều kiện có a,b,c > 0 nên không thể cho S = 0 hay a+b+c = 0 là số chính phương khi và chỉ khi a=b=c=0
Ta có:
\(\overline{abc}+\overline{bca}+\overline{cab}\)
\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)
\(=100a+10b+c+100b+10c+a+100c+10a+b\)
\(=\left(100a+10a+a\right)+\left(100b+10b+b\right)+\left(100c+10c+c\right)\)
\(=111a+111b+111c\)
\(=111\left(a+b+c\right)\)
\(=37.3\left(a+b+c\right)\)
Giả sử \(S\)là số chính phương thì \(S\)phải chứa số \(37\)mủ chẵn
\(\Rightarrow3\left(a+b+c\right)⋮37\)
\(\Rightarrow a+b+c⋮37\)
Điều này không xảy ra vì \(1\le a+b+c\le27\)
Vậy \(\overline{abc}+\overline{bca}+\overline{cab}\) không phải là số chính phương (Đpcm)
mình biết làm như vì lý do ngại giải quá nên bạn thông cảm vào đây:GIÚP TÔI GIẢI TOÁn
Để A = abc + bca + cab = 111(a + b + c) = 3.37(a + b + c)
Để A là số chính phương thì a + b + c chia hết cho 3.37
nhưng 3<a + b + c>27 nên a + b + c không chia hết cho 37
Vậy A không là số chính phương.
S = abc (ngang) + bca (ngang) + cab (ngang)
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
= 111.(a + b + c)
=> Không phải là số chính phương vì a,b,c là các chữ số tự nhiên nên a + b + c ≠ 111
Nguồn : lấy từ bài Đinh Tuấn Việt
S = 111a+111b+111c
= 111(a+b+c)
=37*3*(a+b+c) (37 và 3 là số nguyên tố nên S không thể là số chính phương)
Vậy S không phải là số chính phương