Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=5+5^2+5^3+5^4+...+5^{57}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{55}+5^{56}+5^{57}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{55}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{55}.31\)
\(=31\left(5+5^4+..+5^{55}\right)⋮31\)
Vậy:..
S=5+52+53+....+52004
=(5+53)+(52+54)+.....+(52002+52004)
=5(1+52)+52(1+52)+.........+52002(1+52)
=5.26+52.26+........+52002.26
=26.(5+52+............+52002) chia hết cho 26
Vậy S chia hết cho 26.
=
\(S=5+5^2+5^3+...+5^{2004}\)
\(S=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)
\(S=780+5^4.\left(5+5^2+5^3+5^4\right)+...+5^{2000}.\left(5+5^2+5^3+5^4\right)\)
\(S=780+5^4.780+...+5^{2000}.780\)
\(S=780.\left(1+5^4+...+5^{2000}\right)\)
Ta có \(S=5+5^2+5^3+...+5^{2004}\) \(⋮\) \(780\)
Phân tích: \(780=26.30\)
Tức \(S=5+5^2+5^3+...+5^{2004}\) chia hết cho 26 và 30
Vậy \(S=5+5^2+5^3+...+5^{2004}\) chia hết cho 26
- cho S = 5+ 5^2 + 5^3 + 5^4+ 5^5+.......+5^2004
- chứng minh S chia hết cho 30 và chia hết cho 126.
S = 5+52+53+54+....+52004
S = (5+52)+(53+54)+...+(52003+52004)
S = 1(5+52)+52(5+52)+.....+52002(5+52)
S = 1.30 + 52.30 +.....+52002.30
S = 30.(1+52+....+52002) chia hết cho 30
=> S chia hết cho 30 (Đpcm)
nhóm 4 số liên tiếp lại với nhau(vì 2012 chia hết cho4) ta có
\(\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2009}+5^{2010}+5^{2011}+5^{2012}\right)\)
\(=780+5^4.780+...+5^{2008}.780\)
\(=780\left(1+5^4+...+5^{2008}\right)\)
Vì 780 chia hết cho 65
=>\(=780\left(1+5^4+...+5^{2008}\right)\) chia hết cho 65
hay S chia hết cho 65
\(S=5+5^2+5^3+5^4+...+5^{57}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{55}+5^{56}+5^{57}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(5+1+5^2\right)+...+5^{55}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{55}.31\)
\(=31\left(5+5^4+...+5^{55}\right)⋮31\)
Vậy:.............