Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho s = 3/10+3/11+3/12+3/13+3/14. chứng minh rằng : 1<s<2 . từ đó suy ra s không phải là số tự nhiên
giải\(s>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
\(s<\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}<\frac{20}{10}=2\)
vậy 1<s<2
=>s không thuộc N
S>3/15+3/15+3/15+3/15+3/15=15/15=1
S<3/10+3/10+3/10+3/10+3/10=15/10=3/2<2
⇒S ko ϵ N
giải: s>\(\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
s<\(\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}<\frac{20}{10}=2\)
vậy 1<s<2
=> s không phải là N
S = 3/10 + 3/11 + 3/12 + 3/13 + 3/14 < 3/10 + 3/10 + 3/10 + 3/10 + 3/10
=> S < 5 x 3/10
=> S < 1,5
=> S < 2
S = 3/10 + 3/11 + 3/12 + 3/13 + 3/14 > 3/14 + 3/14 + 3/14 + 3/14 + 3/14
=> S > 5 x 3/14
=> S > 1,07.......
Mà 1 < 1,07 < S < 1,5 < 2
=> 1 < S < 2
\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}\)
\(S>\frac{3}{14}.5\)
\(S>\frac{15}{14}>1\)(1)
\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)
\(S< 5.\frac{3}{10}\)
\(S< \frac{15}{10}< 2\)(2)
Từ (1) và (2) => 1 < S < 2 => S không là số nguyên tố (đpcm)