Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\\ Có.3A=3\left(1+3+3^2+...+3^{30}\right)=3+3^2+3^3+...+3^{31}\\ Mà.A=1+3+3^2+3^3+...+3^{30}\\ \Rightarrow2A=3^{31}-1\\ 2A\equiv3^{31}-1\left(Mod.10\right)\\ \equiv3^{4\cdot7+3}-1\\ \equiv1+27-1\equiv7\)
Phần gì không hiểu thì hỏi nhé
A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30
3 A = 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31
2A = 3A – A = ( 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31 ) – ( 1 + 3 + 3 2 + 3 3 + . . . + 3 30 )
2A = 3 31 - 1
A = 3 31 - 1 2
Ta có 3 1 = 3 ; 3 3 = 9 ; 3 3 = 27 ; 3 4 = 81 ; 3 5 = 243
với n ≥ 0 thì 3 4 n + 3 có chữ số tận cùng là 7.Vì 31 = 4.7 + 3 nên 3 31 có chữ số tận cùng là 7. Do đó 3 31 - 1 2 có chữ số tận cùng là 3. Mà không có số nào bình phương lên có chữ số tận cùng là 3 nên A không là số chính phương.
Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương
Ta có :
1 + 31 + 32 + 33 + 34 ... + 330
= 1 + 31 + 2 + 3 + 4 .. + 30
= 1 + 3465
Tận cùng của 3465
cứ 5 chữ số 3 nhân với nhau thì có tận cùng là 3 . Vì 465 chia hết cho 5 nên tận cùng của 3465 là 3
3 + 1 = 4 nên tận cùng của 1 + 3465 = 4
Các đặc điểm của số chính phương :
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.
- Khi phân tích một số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.
- Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.
- Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)(a-b).
- Số ước nguyên dương của số chính phương là một số lẻ.
- Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.
- Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...
S thỏa mãn các điều kiện trên nên S là số chính phương