K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2022

Bạn vui lòng đối chiếu đề bạn đang có giúp mình ở hai chữ "x" mình in đậm nhé! Mình sẽ hỗ trợ nhanh nhất có thể!

Đề: Cho phương trình: xx2−(m−3)x−m=3 (1).

a) Chứng minh phương trình có hai nghiệm phân biệt.

b) Tìm m đề hai nghiệm x1, xcủa phương trình thoả mãn hệ thức: 3x(x1+x2)−x1x2≥5.

Xin cảm ơn!

17 tháng 6 2022

ko biết làm

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2-3\right)\)

\(=4m^2+8m+4-4m^2+12=8m+16\)

Để phương trình có hai nghiệm thì 8m+16>=0

hay m>=-2

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-3\end{matrix}\right.\)

Theo đề, ta có: \(x_1^2+x_2^2+1=3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2+1=0\)

\(\Leftrightarrow\left(2m+2\right)^2-5\left(m^2-3\right)+1=0\)

\(\Leftrightarrow4m^2+8m+4-5m^2+15+1=0\)

\(\Leftrightarrow-m^2+8m+20=0\)

=>(m-10)(m+2)=0

=>m=10 hoặc m=-2

19 tháng 1 2022

a, \(\Delta'=\left(m+1\right)^2-\left(m^2-3\right)=m^2+2m+1-m^2+3=2m+4\)

Để pt có 2 nghiệm x1 ; x2 khi \(\Delta'\ge0\Leftrightarrow m\ge-2\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2-3\end{matrix}\right.\)

Ta có : \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{1}{x_1x_2}=3\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=3\)

\(\Leftrightarrow\dfrac{4\left(m^2+2m+1\right)-2\left(m^2-3\right)+1}{m^2-3}=3\)

\(\Rightarrow2m^2+8m+11=3m^2-9\Leftrightarrow m^2-8m-20=0\Leftrightarrow m=10;m=-2\)(tm) 

10 tháng 4 2023

a, Thay \(m=-3\) vào \(\left(1\right)\)

\(x^2-2.\left(m-1\right)x-m-3=0\\ \Leftrightarrow x^2-2.\left(-3-1\right)x+3-3=0\\ \Leftrightarrow x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Vậy với \(m=-3\) thì \(x=0;x=-8\)

b,  

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)\\ =m^2-2m+1+m+3\\ =m^2-m+4\)

phương trình có hai nghiệm phân biệt

 \(\Delta'>0\\ m^2-m+4>0\\ \Rightarrow m^2-2.\dfrac{1}{2}m+\dfrac{1}{4}+\dfrac{7}{2}>0\\ \Leftrightarrow\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{2}>0\left(lđ\right)\)

\(\Rightarrow\forall m\)

Áp dụng hệ thức Vi ét :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow x_1^2+2x_1.x_2+x^2_2-4x_1x_2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow\left(2.\left(m-1\right)\right)^2-4.\left(-m-3\right)=4m^2-5.\left(-m-3\right)\\ \Leftrightarrow4m^2-8m+4+4m+12-4m^2-5m-15=0\\ \Leftrightarrow-9m+1=0\\ \Leftrightarrow m=\dfrac{1}{9}\)

Vậy \(m=\dfrac{1}{9}\)

10 tháng 4 2023

a.

Thế m = -3 vào phương trình (1) ta được:

\(x^2-2\left(-3-1\right)x-\left(-3\right)-3=0\)

\(\Leftrightarrow\) \(x^2+8x=0\)

 \(\Leftrightarrow x\left(x+8\right)=0\\ \Rightarrow x_1=0,x_2=-8\)

b.

Để phương trình (1) có hai nghiệm phân biệt thì:

\(\Delta>0\\ \Leftrightarrow\left[-2\left(m-1\right)\right]^2-4.1.\left(-m-3\right)>0\)

\(\Leftrightarrow4.\left(m^2-2m+1\right)+4m+12>0\)

\(\Leftrightarrow4m^2-8m+4+4m+12>0\)

\(\Leftrightarrow4m^2-4m+16>0\)

\(\Leftrightarrow\left(2m\right)^2-4m+1+15>0\)

\(\Leftrightarrow\left(2m-1\right)^2+15>0\)

Vì \(\left(2m-1\right)^2\) luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình (1) có nghiệm với mọi m.

Theo viét:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m-3\end{matrix}\right.\) (I)

có:

\(\left(x_1-x_2\right)^2=4m^2-5x_1+x_2\)

<=> \(x_1^2-2x_1x_2+x_2^2-4m^2+5x_1-x_2=0\)

<=> \(x_1^2-2x_1x_2+x_2^2+2x_1x_2-2x_1x_2-4m^2+5x_1-x_2=0\)

<=> \(\left(x_1+x_2\right)^2-4x_1x_2-4m^2+5x_1-x_2=0\)

<=> \(\left(2m-2\right)^2-4.\left(-m-3\right)-4m^2+5x_1-x_2=0\)

<=> \(4m^2-8m+4+4m+12-4m^2+5x_1-x_2=0\)

<=> \(-4m+16+5x_1-x_2=0\)

<=> \(5x_1-x_2=4m-16\) (II)

Từ (I) và (II) ta có:

\(\left\{{}\begin{matrix}5x_1-x_2=4m-16\left(2\right)\\x_1+x_2=2m-2\left(3\right)\\x_1x_2=-m-3\left(4\right)\end{matrix}\right.\)

Từ (2) ta có:

\(x_1=\dfrac{4m-16+x_2}{5}=\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2\) (x)

Thế (x) vào (3) được:

\(\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2+x_2=2m-2\)

<=> \(\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2+x_2-2m+2=0\)

<=>  \(-1,2m-1,2+1,2x_2=0\)

<=> \(x_2=1,2m+1,2\) (xx)

Thế (xx) vào (3) được:

\(x_1+1,2m+1,2=2m-2\)

<=> \(x_1+1,2m+1,2-2m+2=0\)

<=> \(x_1-0,8m+3,2=0\)

<=> \(x_1=-3,2+0,8m\) (xxx)

Thế (xx) và (xxx) vào (4) được:

\(\left(-3,2+0,8m\right)\left(1,2m+1,2\right)=-m-3\)

<=> \(-3,84m-3,84+0,96m^2+0,96m+m+3=0\)

<=> \(0,96m^2-1,88m-0,84=0\)

\(\Delta=\left(-1,88\right)^2-4.0,96.\left(-0,84\right)=6,76\)

\(m_1=\dfrac{1,88+\sqrt{6,76}}{2.0,96}=\dfrac{7}{3}\left(nhận\right)\)

\(m_2=\dfrac{1,88-\sqrt{6,76}}{2.0,96}=-\dfrac{3}{8}\left(nhận\right)\)

T.Lam

3 tháng 4 2021

a. Khi m=2 thì  (1) có dạng :

\(x^2-6\left(2-1\right)x+9\left(2-3\right)=0\\ \Leftrightarrow x^2-6x-9=0\\ \Leftrightarrow\left(x-3\right)^2=18\Leftrightarrow x-3=\pm\sqrt{18}\\ \Leftrightarrow x=3\pm3\sqrt{2}\)

Vậy với m=2 thì tập nghiệm của phương trình là \(S=\left\{3\pm3\sqrt{2}\right\}\)

 

b. Coi (1) là phương trình bậc 2 ẩn x , ta có:

\(\text{Δ}'=\left(-3m+3\right)^2-1\cdot9\left(m-3\right)=9m^2-18m+9-9m+27\\ =9m^2-27m+36=\left(3m-\dfrac{9}{2}\right)^2+\dfrac{63}{4}>0\)

Nên phương trình (1) luôn có 2 nghiệm x1,x2 thỏa mãn:

\(\left\{{}\begin{matrix}x_1+x_2=6\left(m-1\right)\\x_1x_2=9\left(m-3\right)\end{matrix}\right.\left(2\right)\)

 \(x_1+x_2=2x_1x_2\\ \Leftrightarrow6\left(m-1\right)=18\left(m-3\right)\Leftrightarrow m-1=3m-9\\ \Leftrightarrow2m=8\Leftrightarrow m=4\)

Vậy m=4

b) Ta có: \(\text{Δ}=\left[-6\left(m-1\right)\right]^2-4\cdot1\cdot9\left(m-3\right)\)

\(=\left(6m-6\right)^2-36\left(m-3\right)\)

\(=36m^2-72m+36-36m+108\)

\(=36m^2-108m+144\)

\(=\left(6m\right)^2-2\cdot6m\cdot9+81+63\)

\(=\left(6m-9\right)^2+63>0\forall m\)

Suy ra: Phương trình luôn có hai nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=6\left(m-1\right)=6m-6\\x_1\cdot x_2=9\left(m-3\right)=9m-27\end{matrix}\right.\)

Ta có: \(x_1+x_2=2x_1\cdot x_2\)

\(\Leftrightarrow6m-6=2\left(9m-27\right)\)

\(\Leftrightarrow6m-6-18m+54=0\)

\(\Leftrightarrow-12m+48=0\)

\(\Leftrightarrow-12m=-48\)

hay m=4

Vậy: m=4