Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. tìm đenta phẩy
sau đó cho đenta phẩy >0
tìm x1+x2,x1*x2 theo hệ thức viets
thay vào ra mà
dùng phương pháp Vi-ét ko hoàn toàn
(mình đăng lên youtube rồi đấy)
|x1|=3|x2|
=>|2m+2-x2|=|3x2|
=>4x2=2m+2 hoặc -2x2=2m+2
=>x2=1/2m+1/2 hoặc x2=-m-1
Th1: x2=1/2m+1/2
=>x1=2m+2-1/2m-1/2=3/2m+3/2
x1*x2=m^2+2m
=>1/2(m+1)*3/2(m+1)=m^2+2m
=>3/4m^2+3/2m+3/4-m^2-2m=0
=>m=1 hoặc m=-3
TH2: x2=-m-1 và x1=2m+2+m+1=3m+3
x1x2=m^2+2m
=>-3m^2-6m-3-m^2-2m=0
=>m=-1/2; m=-3/2
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'=\left(m+1\right)^2+32>0\left(\text{đúng }\forall m\right)\)
Theo Vi-ét: \(\begin{cases} x_1+x_2=-2(m+1)=-2m-2\\ x_1x_2=-8 \end{cases}\)
Vì $x_1$ là nghiệm của PT nên \(x_1^2=-2(m+1)x_1+8\)
Ta có \(x_1^2=x_2\)
\(\Leftrightarrow-2\left(m+1\right)x_1+8=x_2\\ \Leftrightarrow x_2+2mx_1+2x_1-8=0\\ \Leftrightarrow\left(x_1+x_2\right)+2mx_1+x_1-8=0\\ \Leftrightarrow x_1\left(2m+1\right)-2m-10=0\\ \Leftrightarrow x_1=\dfrac{2m+10}{2m+1}\)
Mà \(x_1+x_2=-2m-2\Leftrightarrow x_2=-2m-2-\dfrac{2m+10}{2m+1}=\dfrac{-4m^2-8m-12}{2m+1}\)
Ta có \(x_1x_2=-8\)
\(\Leftrightarrow\dfrac{2m+10}{2m+1}\cdot\dfrac{-4m^2-8m-12}{2m+1}=-8\\ \Leftrightarrow\left(2m+10\right)\left(m^2+2m+3\right)=2\left(2m+1\right)^2\\ \Leftrightarrow m^3+3m^2+9m+14=0\\ \Leftrightarrow m^3+2m^2+m^2+2m+7m+14=0\\ \Leftrightarrow\left(m+2\right)\left(m^2+m+7\right)=0\\ \Rightarrow m=-2\)
Vậy $m=-2$
\(\Delta=1-4m>0\Rightarrow m< \dfrac{1}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)
\(\left(x_1^2+x_2+m\right)\left(x_2^2+x_1+m\right)=m^2-m-1\)
\(\Leftrightarrow\left[x_1\left(x_1+x_2\right)-x_1x_2+x_2+m\right]\left[x_2\left(x_1+x_2\right)-x_1x_2+x_1+m\right]=m^2-m-1\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1+x_2\right)=m^2-m-1\)
\(\Leftrightarrow m^2-m-1=1\)
\(\Leftrightarrow m^2-m-2=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2>\dfrac{1}{4}\left(loại\right)\end{matrix}\right.\)
xét pt \(x^2-mx+m-1=0\) \(\left(1\right)\)
xó \(\Delta=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\forall m\ne2\)
\(\Rightarrow pt\) (1) có 2 nghiệm phân biệt \(x_1,x_2\forall m\ne2\)
ta có vi -ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
theo bài ra \(\left|x_1\right|+\left|x_2\right|=6\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=36\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=36\)
\(\Leftrightarrow m^2-2\left(m-1\right)+2\left|m-1\right|=36\)
nếu \(m-1< 0\Rightarrow m^2-4m-32=0\) ta tìm được \(m=8\left(loai\right)\); \(m=-4\left(TM\right)\)
nếu \(m-1\ge0\Rightarrow m^2=36\Rightarrow m=6\left(TM\right);m=-6\left(loai\right)\)
vậy \(m=-4;m=6\) là các giá trị cần tìm
\(\Delta'=\left(m-1\right)^2-4m+11=\left(m-3\right)^2+3>0\)
Theo đl Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=4m-11\end{matrix}\right.\)
Do \(x_1\) là nghiệm nên: \(x_1^2+2\left(m-1\right)x_1+2m-11=0\)
\(\Leftrightarrow\left(x_1-1\right)^2=12-2m-2mx_1\)
Thay vào:
\(2\left(12-2m-2mx_1\right)+\left(6-x_2\right)\left(4m-11+11\right)=72\)
\(\Leftrightarrow24-4m-4mx_1+24m-4mx_2-72=0\)
\(\Leftrightarrow-4m\left(x_1+x_2\right)+20m-48=0\)
\(\Leftrightarrow2m\left(m-1\right)+5m-12=0\)
\(\Leftrightarrow...\)
Bạn xem lại đề có nhầm ko, chứ thế này thì giải ra rất rất rất xấu
\(\Delta'=m^2-6m+12>0\Rightarrow\) pt luôn có 2 nghiệm phân biệt
Do \(x_1\) là nghiệm nên \(x_1^2+2\left(m-1\right)x_1+4m-11=0\)
\(\Leftrightarrow\left(x_1-1\right)^2=12-4m-2mx_1\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=4m-11\end{matrix}\right.\)
\(2\left(12-4m-2mx_1\right)+\left(6-x_2\right)\left(4m-11+11\right)=72\)
\(\Leftrightarrow24-8m-4mx_1+24m-4mx_2=72\)
\(\Leftrightarrow16m-4m\left(x_1+x_2\right)=48\)
\(\Leftrightarrow2m+m\left(m-1\right)=6\)
\(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)