K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 4 2019

\(a+b+c=1-m+m-1=0\)

\(\Rightarrow\) Pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)

\(\frac{2.1\left(m-1\right)+3}{1+\left(m-1\right)^2+2\left(1+m-1\right)}=1\)

\(\Leftrightarrow2m+1=m^2+2\)

\(\Leftrightarrow m^2-2m+1=0\Rightarrow m=1\)

16 tháng 4 2019

Nguyễn Việt Lâm giúp mk nhá..

NV
14 tháng 4 2022

1.

\(a+b+c=0\) nên pt luôn có 2 nghiệm

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)

Dấu "=" xảy ra khi \(m=1\)

2.

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)

\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)

15 tháng 4 2022

undefined

10 tháng 5 2018

xét pt \(x^2-mx+m-1=0\)  \(\left(1\right)\)

xó \(\Delta=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\forall m\ne2\)

\(\Rightarrow pt\)  (1) có 2 nghiệm phân biệt \(x_1,x_2\forall m\ne2\)

ta có vi -ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)

theo bài ra \(\left|x_1\right|+\left|x_2\right|=6\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=36\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=36\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=36\)

\(\Leftrightarrow m^2-2\left(m-1\right)+2\left|m-1\right|=36\)

nếu \(m-1< 0\Rightarrow m^2-4m-32=0\)  ta tìm được \(m=8\left(loai\right)\)\(m=-4\left(TM\right)\)

nếu \(m-1\ge0\Rightarrow m^2=36\Rightarrow m=6\left(TM\right);m=-6\left(loai\right)\)

vậy \(m=-4;m=6\)  là các giá trị cần tìm 

10 tháng 5 2018

b) \(P=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2+2}\)

\(P=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2\left(m-1\right)+3}{m^2+2}\)

\(P=\frac{2m-2+3}{m^2+2}=\frac{2m+1}{m^2+2}\)

vậy \(P=\frac{2m+1}{m^2+2}\)

21 tháng 3 2022

a, \(\Delta'=\left(m-1\right)^2-\left(-2m+5\right)=m^2-2m+1+2m-5=m^2-4\)

Để pt vô nghiệm thì \(m^2-4< 0\Leftrightarrow-2< m< 2\)

Để pt có nghiệm kép thì \(m^2-4=0\Leftrightarrow m=\pm2\)

Để pt có 2 nghiệm phân biệt thì \(m^2-4>0\Leftrightarrow\left[{}\begin{matrix}m< -2\\m>2\end{matrix}\right.\)

2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-2m+5\end{matrix}\right.\)

\(a,ĐKXĐ:x_1,x_2\ne0\\ \dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=2\\ \Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m-2\right)^2-4\left(-2m+5\right)=0\\ \Leftrightarrow4m^2-8m+4+8m-20=0\\ \Leftrightarrow4m^2-16=0\\ \Leftrightarrow m=\pm2\)

\(b,x_1+x_2+2x_1x_2\le6\\ \Leftrightarrow2m-2+2\left(-2m+5\right)\le6\\ \Leftrightarrow2m-2-4m+10-6\le0\\ \Leftrightarrow-2m+2\le0\\ \Leftrightarrow m\ge1\)

 

2 tháng 5 2017

b/ Theo vi - et thì:

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)

Ta có:

\(A=\frac{1}{x^2_1x_2+\left(m-1\right)x_2+1}-\frac{4}{x_1x^2_2+\left(m-1\right)x_1+1}\)

\(=\frac{1}{\left(m-1\right)x_1+\left(m-1\right)x_2+1}-\frac{4}{\left(m-1\right)x_2+\left(m-1\right)x_1+1}\)

\(=\frac{1}{m\left(m-1\right)+1}-\frac{4}{m\left(m-1\right)+1}\)

\(=-\frac{3}{m^2-m+1}=-\frac{3}{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\)

\(\ge-\frac{3}{\frac{3}{4}}=-4\)

Vậy GTNN là A = - 4 đạt được khi \(m=\frac{1}{2}\) 

2 tháng 5 2017

Em không hiểu dòng 2 của biểu thức ý..