Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow1-m\ge0\Leftrightarrow m\le1\)
Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\) (1)
Ta có: \(\dfrac{1}{x^2}+\dfrac{1}{x^2}=1\Leftrightarrow\dfrac{x^2_1+x^2_2}{x^2_1x^2_2}=1\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=1\) (2)
Từ (1) và (2) \(\Rightarrow4-2m=m^2\Leftrightarrow m^2+2m-4=0\)
\(\Delta'=1+4=5\Rightarrow\sqrt{\Delta'}=\sqrt{5}\Rightarrow\left[{}\begin{matrix}m=-1+\sqrt{5}\left(\text{loại}\right)\\m=-1-\sqrt{5}\left(\text{nhận}\right)\end{matrix}\right.\)
Vậy \(m=-1-\sqrt{5}\)
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
1.
\(a+b+c=0\) nên pt luôn có 2 nghiệm
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)
Dấu "=" xảy ra khi \(m=1\)
2.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)
\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-4\right)\\x_1x_2=-m^2+4\end{matrix}\right.\)
\(\dfrac{x_1+x_2}{x_1x_2}+\dfrac{4}{x_1x_2}=1\)
Thay vào ta được : \(\dfrac{2\left(m-4\right)+4}{-m^2+4}=1\Leftrightarrow\dfrac{2m-4}{\left(2-m\right)\left(m+2\right)}=1\Leftrightarrow\dfrac{-2}{m+2}=1\Rightarrow-2=m+2\Leftrightarrow m=-4\)
Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)
=>Pt luôn có hai nghiệm pb
Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)
Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)
\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)
\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)
\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)
\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)
Vậy m=1
Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)
Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)
\(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)
\(\Leftrightarrow...\)
Lời giải:
PT có \(\Delta'=1+3m^2>0, \forall m\in\mathbb{R}\) nên luôn có hai nghiệm phân biệt với mọi $m$ thực.
Áp dụng định lý Viete cho phương trình bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=-3m^2\end{matrix}\right.\)
Để PT có hai nghiệm khác $0$ thì chỉ cần \(x_1x_2\neq 0\Leftrightarrow -3m^2\neq 0\Leftrightarrow m\neq 0\)
Biến đổi:
\(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)
\(\Leftrightarrow \frac{x_1^2-x_2^2}{x_1x_2}=\frac{8}{3}\)\(\Leftrightarrow \frac{(x_1-x_2)(x_1+x_2)}{x_1x_2}=\frac{8}{3}\)
\(\Leftrightarrow \frac{2(x_1-x_2)}{-3m^2}=\frac{8}{3}\Rightarrow x_1-x_2=-4m^2\Rightarrow (x_1-x_2)^2=16m^4\)
\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=16m^4\)
\(\Leftrightarrow 4+12m^2=16m^4\)
\(\Leftrightarrow 4m^4-3m^2-1=0\Leftrightarrow (m^2-1)(4m^2+1)=0\)
Hiển nhiên \(4m^2+1> 0,\forall m\) nên \(m^2-1=0\Leftrightarrow m=\pm 1\) (thỏa mãn)
đk bài toán \(\Leftrightarrow\left\{{}\begin{matrix}x_1;x_2\ne0\\\dfrac{x_1}{x_2}-\dfrac{x_2}{x_1}=\dfrac{8}{3}\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
(1) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\f\left(0\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1+3m^2\ge0\\-3m^2\ne0\end{matrix}\right.\) \(\Rightarrow m\ne0\)
hằng đẳng thức có \(\Leftrightarrow\dfrac{x_1^2-x_2^2}{x_1.x_2}=\dfrac{\left(x_1-x_2\right)\left(x_1+x_2\right)}{x_1x_2}\)
công thức nghiệm có \(x_{1,2}=1\pm\sqrt{1+3m^2}\)
vi et có \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=-3m^2\end{matrix}\right.\)
(2) \(\Leftrightarrow\dfrac{2.\left(x_1-x_2\right)}{-3m^2}=\dfrac{8}{3}\) (3)
có -3m^2 <0 mọi m khác 0 =>\(x_1-x_2< 0\) \(\Rightarrow\left\{{}\begin{matrix}x_1=1-\sqrt{1+3m^2}\\x_2=1+\sqrt{1+3m^2}\end{matrix}\right.\)
(3) \(\Leftrightarrow\dfrac{2\left[-2\sqrt{1+3m^2}\right]}{-3m^2}=\dfrac{8}{3}\)
\(\Leftrightarrow\sqrt{3m^2+1}=2m^2\) \(\Leftrightarrow4m^4-3m^2-1=0\)
đặt m^2= t; => t >0
\(\Leftrightarrow4t^2-3t-1=0\left\{a+b+c=0\right\}\)
\(\left[{}\begin{matrix}t_1=1\\t_2=-\dfrac{1}{4}\left(l\right)\end{matrix}\right.\)
kết luận m =+-1