Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=\left(2m-3\right)^2-4\left(m-3\right)=9>0\)
Vậy PT có 2 nghiệm phân biệt với mọi m
Ta có \(\left[{}\begin{matrix}x_1=\dfrac{2m-3+3}{2}=m\\x_2=\dfrac{2m-3-3}{2}=m-3\end{matrix}\right.\)
Ta thấy \(m>m-3\) nên \(1< m-3< m< 6\Leftrightarrow4< m< 6\)
Vậy \(4< m< 6\) thỏa yêu cầu đề
Có\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)
=> pt luôn có hai nghiệm pb
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)
\(\Rightarrow P\ge0\)
Dấu = xảy ra khi m=-1
a: Khi m = -4 thì:
\(x^2-5x+\left(-4\right)-2=0\)
\(\Leftrightarrow x^2-5x-6=0\)
\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)
Pt có 2 nghiệm phân biệt:
\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)
Để pt 1 có 2 nghiệm phân biệt =>\(\Delta\)>0
<=> (2m-1(2 - 4(m2-3m-4( >0
<=> 4m2 - 4m + 1 - 4m2+12m+16 > 0
<=>8m +17>0
<=> m>-17/8
=> theo hệ thức Vi ét ta có
x1+x2=-2m+1 *
x1.x2=m2-3m-4 *
Theo bài ra ta có pt
|x1−x2|−2=0
<=> |x1−x2|=2
<=> (x1-x2(2=22
<=> x12 - 2x1.x2 + x22 = 4
<=> (x1 + x2 > 2- 4 x1x2 = 4 <**>
Thay *,* vào <**> ta được :
(-<2m-1>>2 - 4<m2-3m-4> = 4
<=> 4m2-4m+1 - 4m2+12m+16=4
<=> 8m + 17= 4
<=> 8m = 13
<=> m= 13/8 < t/m >
Vậy m = 13/8 là giá trị cần tìm
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=(2m-1)^2-4(m^2-3m-4)=8m+17>0\Leftrightarrow m> \frac{-17}{8}$
Áp dụng định lý Viet:
$x_1+x_2=1-2m$
$x_1x_2=m^2-3m-4$
Khi đó:
$|x_1-x_2|-2=0$
$\Leftrightarrow |x_1-x_2|=2$
$\Leftrightarrow (x_1-x_2)^2=4$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=4$
$\Leftrightarrow (1-2m)^2-4(m^2-3m-4)=4$
$\Leftrightarrow 8m+17=4$
$\Leftrightarrow m=\frac{-13}{8}$ (tm)
Sửa đề: \(x_2^2-x_1^2=2\)
Ta có: \(\Delta=\left[-\left(m-3\right)\right]^2-4\cdot1\cdot\left(-2m+2\right)\)
\(=\left(m-3\right)^2-4\left(-2m+2\right)\)
\(=m^2-6m+9+8m-8\)
\(=m^2+2m+1\)
\(=\left(m+1\right)^2\ge0\forall m\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=m-3\\x_1\cdot x_2=-2m+2\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4\cdot x_1x_2\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(m-3\right)^2-4\left(-2m+2\right)\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=m^2-6m+9+8m-8=m^2-2m+1\)
\(\Leftrightarrow x_1-x_2=m-1\)
Ta có: \(x_2^2-x_1^2=2\)
\(\Leftrightarrow\left(x_2-x_1\right)\left(x_2+x_1\right)=2\)
\(\Leftrightarrow\left(1-m\right)\left(m-3\right)=2\)
\(\Leftrightarrow m-3-m^2+3m-2=0\)
\(\Leftrightarrow-m^2+4m-5=0\)
\(\Leftrightarrow m^2-4m+5=0\)(Vô lý)
Vậy: Không có giá trị nào của m để phương trình có hai nghiệm thỏa mãn \(x_2^2-x_1^2=2\)