Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Thay m=-2 vào biểu thức ta có:
\(\left(2.-2\right)\left(x+3\right)=-\left(-2\right)x+5\)
\(\Leftrightarrow-4\left(x+3\right)=4x+5\)
\(\Leftrightarrow-4x-12=4x+5\)
\(\Leftrightarrow-4x-4x=12+5\)
\(\Leftrightarrow-8x=17\)
\(\Leftrightarrow x=\dfrac{-17}{8}\)
Nếu m=-2 thì \(x=\dfrac{-17}{8}\)
còn m=\(\dfrac{1}{2}\) thì bạn làm tương tự
mấy câu kia lát mình làm sau giờ mình bận rồi
a/ +) Với m = -2 ta có:
\(\left(2\cdot\left(-2\right)-1\right)\left(x+3\right)=-\left(-2x\right)+5\)
\(\Leftrightarrow-5\left(x+3\right)=2x+5\Leftrightarrow-5x-2x=5+15\)
\(\Leftrightarrow-7x=20\Leftrightarrow x=-\dfrac{20}{7}\)
Vậy khi m = -2 thì x = -20/7
+) Với m = 1/2 ta có:
\(\left(2\cdot\dfrac{1}{2}-1\right)\left(x+3\right)=-\dfrac{1}{2}x+5\)
\(\Leftrightarrow\dfrac{1}{2}x=5\Leftrightarrow x=10\)
Vậy khi m = 1/2 thì x = 10
b/ pt có nghiệm = -2
=> \(2m-1=2m+5\Leftrightarrow0\cdot m=6\left(voli\right)\)
Vậy không có gt của m nào t/m để pt có nghiệm x = -2
c/ (2m-1)(x+3) = -mx + 5
\(\Leftrightarrow2mx+6m-x+mx-3=5\)
\(\Leftrightarrow3mx-x=5-6m+3\)
\(\Leftrightarrow x\left(3m-1\right)=-6m+8\Leftrightarrow x=\dfrac{-6m+8}{3m-1}\)
a, m\(x\) -2\(x\) + 3 = 0
Với m = -4 ta có :
-4\(x\) - 2\(x\) + 3 = 0
-6\(x\) + 3 = 0
6\(x\) = 3
\(x\) = 3 : 6
\(x\) = \(\dfrac{1}{2}\)
b, Vì \(x\) = 2 là nghiệm của phương trình nên thay \(x\) = 2 vào phương tình ta có : m.2 - 2.2 + 3 = 0
2m - 1 = 0
2m = 1
m = \(\dfrac{1}{2}\)
c, m\(x\) - 2\(x\) + 3 = 0
\(x\)( m -2) + 3 = 0
\(x\) = \(\dfrac{-3}{m-2}\)
Hệ có nghiệm duy nhất khi m - 2 # 0 => m#2
d, Để phương trình có nghiệm nguyên thì: -3 ⋮ m -2
m - 2 \(\in\) { - 3; -1; 1; 3}
m \(\in\) { -1; 1; 3; 5}
Lời giải:
a)
Khi $m=-1$ thì pt trở thành:
\((-1+1)x^2-(2.-1+3)x+(-1)+4=0\)
\(\Leftrightarrow -x+3=0\Leftrightarrow x=3\)
b)
Ta thấy $m=-1$ thì pt có nghiệm $x=3$ như phần a
Với $m\neq -1$ thì $m+1\neq 0$ nên pt đã cho là pt bậc 2
PT có nghiệm \(\Leftrightarrow \Delta=[-(2m+3)]^2-4(m+4)(m+1)\geq 0\)
\(\Leftrightarrow -8m-7\geq 0\Leftrightarrow 8m+7\leq 0\)
\(\Leftrightarrow m\leq \frac{-7}{8}\)
a) Thay m=2 vào phương trình, ta được:
\(2^2+4\cdot3-3=2^2+x\)
\(\Leftrightarrow x+4=4+12-3\)
\(\Leftrightarrow x+4=13\)
hay x=9
Vậy: Khi m=2 thì x=9
Lời giải:
Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$
a) Với $m=2$ thì $x=4.2-3=5$
Vậy $x=5$
b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$
c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$
a/ \(\left(m+1\right)x+4=x+m^2\)
\(\Leftrightarrow\left(m+1\right)x-x=m^2-4\)
\(\Leftrightarrow x\left(m+1-1\right)=m^2-4\Leftrightarrow mx=m^2-4\Leftrightarrow x=\dfrac{m^2-4}{m}\)
b/ Pt có nghiệm = 3
=> \(\left(m+1\right)\cdot3+4=3+m^2\)
\(\Leftrightarrow3m+7=3+m^2\)
\(\Leftrightarrow-m^2+3m+4=0\)
\(\Leftrightarrow-m^2-m+4m+4=0\)
\(\Leftrightarrow-m\left(m+1\right)+4\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(4-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\4-m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=4\end{matrix}\right.\)
Vậy m = -1 hoặc m = 4 thì pt có nghiệm x = 3