K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2021

\(\left\{{}\begin{matrix}ax^2+by+c=0\\cx^2+by+a=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}ax^2+by=-c\\cx^2+by=-a\end{matrix}\right.\)

vì pt có 1 nghiệm duy nhất

nên\(\dfrac{a}{c}\ne\dfrac{b}{b}\)\(\dfrac{a}{c}\ne1\)\(a\ne c\)

 

 

 

17 tháng 5 2021

mình chỉ biết làm điều kiện thôi

 

18 tháng 6 2015

a) pt có 2 nghiệm dương <=> \(\Delta\ge0;\int^{x1+x2>0}_{x1.x2>0}\Leftrightarrow4\left(m+1\right)^2-4\left(m-4\right)\ge0;\int^{2m+2>0}_{m-4>0}\Leftrightarrow4m^2+4m+4+16\ge0;\int^{m>-1}_{m>4}\)

=> m>4. (cái kí hiệu ngoặc kia là kí hiệu và nha. tại trên này không có nên dùng tạm cái ý)

b) áp dụng hệ thức vi ét ta có: x1+x2=2m+2; x1.x2=m-4

 \(M=\frac{\left(x1+x2\right)^2-2x1x2}{x1-x1.x2+x2-x1.x2}=\frac{\left(2m+2\right)^2-2\left(m-4\right)}{2m+2-2\left(m-4\right)}=\frac{4m^2+6m+12}{10}=\frac{\left(4m^2+6m+\frac{9}{4}\right)+\frac{39}{4}}{10}=\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\)

ta có: \(\left(2m+\frac{3}{2}\right)^2\ge0\Leftrightarrow\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\Leftrightarrow\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\ge\frac{39}{40}\)=> Min M=39/40 <=>m=-3/4

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

2 tháng 1 2022

còn thiếu -b/a > 0  ạ

23 tháng 2 2019

\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)

a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)

\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\) 

\(\Leftrightarrow4>0\)(luôn đúng)

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

b) Để t nghĩ tí

23 tháng 2 2019

ý b kìa ý a mình biết rồi

13 tháng 5 2021

a, thay m=2 vào phương trình (1) ta được:

x^2-6.x+3=0

có: \(\Delta\)1=(-6)^2-4.3=24>0

vậy phương trình có 2 nghiệm phân biệt :

x3=(6+\(\sqrt{ }\)24)/2=3+\(\sqrt{ }\)6

x4=(6-\(\sqrt{ }\)24)/2=3-\(\sqrt{ }\)6

b, từ phương trình (1) ta có :

\(\Delta\)=[-2(m+1)]^2-4.(m^2-1)=(2m+2)^2-4m^2+4=4m^2+8m+4-4m^2+4

=8m+8

để pt(1) có 2 nghiệm x1,x2 khi \(\Delta\)\(\ge\)0<=>8m+8\(\ge\)0

<=>m\(\ge\)-1

 m\(\ge\)-1 thì pt(1) có 2 nghiệm x1,x2

theo vi ét=>x1+x2=2m+2

lại có x1+x2=1<=>2m+2=1<=>m=-1/2(thỏa mãn)

vậy m=-1/2 thì pt(1) có 2 nghiệm x1+x2 thỏa mãn x1+x2=1

 

 

 

13 tháng 5 2021

\(x^2-2\left(m+1\right)x+m^2-1=0\)(1)

a,Thay m=2 vào pt (1) có

\(x^2-2\left(2+1\right)x+2^2-1=0\)

\(x^2-6x+3=0\)

\(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\) khi m=2

11 tháng 7 2015

\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)

\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)

A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)

\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.

\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)

(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)

\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}

NV
11 tháng 11 2019

a/ Thay \(x=0\) vào pt ta được:

\(m^2-3m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)

- Khi \(m=0\Rightarrow x^2+2x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

- Khi \(m=3\Rightarrow x^2-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

b/ Theo định lý Viet:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\frac{x_1+x_2+2}{2}\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\left(\frac{x_1+x_2+2}{2}\right)^2-\frac{3}{2}\left(x_1+x_2+2\right)\)

11 tháng 3 2022

Bài 1:

a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\ \Leftrightarrow x^2+1+7=0\\ \Leftrightarrow x^2+8=0\left(vô.lí\right)\)

Thay m=3 vào (1) ta có:

\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)

b, Thay x=4 vào (1) ta có:

\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)

c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)

\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)

\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)

11 tháng 3 2022

Bài 2:

a,Thay m=-2 vào (1) ta có:

\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)

\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)

\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)

\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)

4 tháng 4 2017

Để PT có 2 nghiệm thì:

∆' = (m - 1)2 - (m - 5) > 0

<=> m2 - 3m + 6 > 0

Đúng với mọi m.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m-5\end{cases}}\)

Theo đề ta có:

(2x1 - 1)(2x2 - 1) = 3

<=> 4x1x2 - 2(x1 + x2) = 2

<=> 4(m - 5) - 2(2m - 2) = 2

<=> 0m = 18

Vậy không tồn tại n thỏa mãn