K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

Để P đạt GTLN 

=> x - 2020 nhỏ nhất và x - 2020 > 0 ;  x - 2020 \(\ne\)0

=> x - 2020 = 1

=> x = 2021

=> GTLN Của P = \(\frac{2019}{2021-2020}=\frac{2019}{1}=2019\)

Vậy GTLN của P là 2019 khi x = 2021

12 tháng 3 2021

x=2021 để P có giá trị lớn nhất . Giá trị lớn nhất là 2019

Ta có:\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=2+\frac{-1}{n+3}\)

Để\(A\inℤ\Leftrightarrow\frac{-1}{n+3}\inℤ\)

\(\Leftrightarrow n+3\inƯ\left(-1\right)=\left\{\pm1\right\}\)

Vậy\(n\in\left\{-2;-4\right\}\)

13 tháng 3 2020

\(B=\frac{2020}{x}-2019\) (ĐKXĐ: \(x\ne0\))

B đạt GTLN <=> \(\frac{2020}{x}\)là số dương (\(\frac{2020}{x}>0\)

<=> \(x>0\)(vì \(2020>0\)), mà  \(x\in Z\)=>  \(x\ge1\)

<=> \(\frac{2020}{x}\le\frac{2020}{1}\)

<=> \(\frac{2020}{x}-2019\le2020-2019=1\)

Dấu "=" xảy ra <=> x = 1 (tmđkxđ)

Vậy GTLN của B là 1, tại x = 1.

14 tháng 5 2020

Bạn hỏi câu này bên Hoidap247 đúng không nè? :)

a) Ta có : \(\left(x+1\right)^{2020}\ge0\forall x\inℤ\)

\(\Rightarrow2019-\left(x+1\right)^{2020}\le2019\)

Dấu "=" xảy ra khi \(\left(x+1\right)^{2020}=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

Vậy GTLN của P = 2019 tại \(x=-1\).

b) Ta có : \(\left|2019-x\right|\ge0\forall x\inℤ\)

\(\Rightarrow2020-\left|2019-x\right|\le2020\)

Dấu "=" xảy ra khi \(\left|2019-x\right|=0\)

\(\Rightarrow2019-x=0\)

\(\Rightarrow x=2019\)

Vậy GTLN của Q = 2020 tại \(x=2019\).

14 tháng 5 2020

a) \(P=2019-\left(x+1\right)^{2020}\)

Ta có \(\left(x+1\right)^{2020}\ge0\forall x\)

\(\Rightarrow2019-\left(x+1\right)^{2020}\ge2019\)

Dáu "=" xảy ra <=> \(\left(x+1\right)^{2020}=0\)

<=> x+1=0

<=> x=-1

Vậy MaxA=2019 đạt được khi x=-1

b) \(Q=2020-\left|2019-x\right|\)

Ta có \(\left|2019-x\right|\ge0\forall x\)

\(\Rightarrow2020-\left|2019-x\right|\ge2020\)

Dấu "=" xảy ra <=> |2019-x|=0

<=> 2019-x=0

<=> x=2019

Vậy MaxQ=2020 đạt được khi x=2019

3 tháng 4 2018

a, \(A=\frac{n-2}{n+3}\) là phân số \(\Leftrightarrow n+3\ne0\)

                                             \(\Leftrightarrow n\ne-3\)

b, \(A=\frac{n-2}{n+3}\) là số nguyên \(\Leftrightarrow n-2⋮n+3\)

\(n-2⋮n+3\)

\(\Rightarrow n+3-5⋮n+3\)

     \(n+3⋮n+3\)

\(\Rightarrow5⋮n+3\)

\(\Rightarrow n+3\inƯ\left(5\right)\)

\(\Rightarrow n+3\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-4;-2;-8;2\right\}\)

Bài 1 :( 1 ) \(A=5+5^2+5^3+...+5^{2019}\Rightarrow5A=5^2+5^3+5^4+...+5^{2020}\)

\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{2020}\right)-\left(5+5^2+5^3+...+5^{2019}\right)\)

\(\Rightarrow4A=5^{2020}-5\Leftrightarrow4A+5=5^{2020}-5+5=5^{2020}\Rightarrow\) là số chính phương

( 2 ) Gọi ƯCLN của \(3n+2\) và \(5n+3\) là \(d\left(d>0\right)\)

Có \(3n+2⋮d\Leftrightarrow5\left(3n+2\right)⋮d\Leftrightarrow5.3n+2.5=15n+10⋮d\left(1\right)\)

Có \(5n+3⋮d\Leftrightarrow3\left(5n+3\right)⋮d\Leftrightarrow3.5n+3.3=15n+9⋮d\left(2\right)\). Từ \(\left(1\right)\left(2\right)\)

\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\Rightarrowđpcm\)

Bài 2 : ( 1 ) Có \(P=\frac{2019}{x-2020}\) vì tử số dương \(\Rightarrow GTLN\) của \(P=\frac{2019}{x-2020}>0\)

Mà \(2020\) dương \(\Rightarrow x\) dương để \(TMĐK\) \(x-2020>0\)

Để \(P\) có \(GTLN\) lớn nhất thì \(x-2020\) nhỏ nhất \(\Leftrightarrow x-2020=1\Rightarrow x=2021\)

( 2 ) Có \(\frac{a}{b}=\frac{3}{4}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\) ; \(\frac{b}{c}=\frac{4}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{3}\)

\(\Rightarrow a=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)

\(\Rightarrow b=36\div\left(3+4+3\right)\times4=36\div10\times4=14,4\)

\(\Rightarrow c=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)

2 tháng 3 2020

cho mình hỏi bài 1 phần 2 chữ đpcm là gi thế bạn

Câu 1: Cho N=36 x 57. Số ước nguyên của N là:…?Câu 2: Số tự nhiên nhỏ nhất có 5 chữ số khác nhau mà tổng bằng 23Câu 3: Cho số M= 26x3x5   . Ước nguyên âm nhỏ nhất của M là …?Câu 4: Số tự nhiên n có 3 chữ số lớn nhất sao cho 2n+7 chia hết cho 13Câu 5: Tìm x biết: I x2- 2I + I 2-x2I= 28. Tìm tập hợp các gtrị x nguyên thỏa mãn: {…}Câu 6: Số các cặp (x; y)  nguyên thỏa mãn biết: x>y và x/9= 7/y...
Đọc tiếp

Câu 1: Cho N=36 x 57. Số ước nguyên của N là:…?

Câu 2: Số tự nhiên nhỏ nhất có 5 chữ số khác nhau mà tổng bằng 23

Câu 3: Cho số M= 26x3x5   . Ước nguyên âm nhỏ nhất của M là …?

Câu 4: Số tự nhiên n có 3 chữ số lớn nhất sao cho 2n+7 chia hết cho 13

Câu 5: Tìm x biết: I x2- 2I + I 2-x2I= 28. Tìm tập hợp các gtrị x nguyên thỏa mãn: {…}

Câu 6: Số các cặp (x; y)  nguyên thỏa mãn biết: x>y và x/9= 7/y là….

Câu 7: Tìm số tự nhiên          a bé nhất biết a: 120 dư 58 và a: 135 dư 88

Câu 8: Biết a+b= 12.

Tính A= 15a+ 7b- (6a-2b)+32

Câu 9: Tổng 30 số tự nhiên liên tiếp là 2025. Giả sử d là ƯCLN của số đó. Khi đó gtrị lớn nhất của d là bao nhiêu.

Câu 10: Cho số tự nhiên B= ax by  trong đó a và b là các số tự nhiên khác nhau và khác 0. Biết B2 có 15 ước. Hỏi B3  tât cả bao nhiêu ước ?

0
6 tháng 2 2020

a)

(x-2)(y+1)=7

=> x-2 ; y+1 thuộc Ư(7)={-1,-7,1,7}

Ta có bảng:

x-2-1-717
y+1-7-171
x1-539
y-8-260

Vậy ta chỉ có 2 cặp x,y thõa mãn điều kiện x>y; là (1,-8) và (9,0)

b)

3x+8 chia hết cho x-1

<=> 3x-3+11 chia hết cho x-1

<=> 3(x-1)+11 chia hết cho x-1

<=> 3(x-1) chia hết x-1; 11 chia hết cho x-1

=> x-1 \(\in\)Ư(11)={-1,-11,1,11}

<=>x\(\in\){0,-10,2,12}