Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a>b\) nên \(a=b+m\) \(\left(m\inℕ^∗\right)\)
Ta có : \(\frac{a}{b}=\frac{b+m}{b}=1+\frac{m}{b}\)
\(\frac{a+c}{b+c}=\frac{b+m+c}{b+c}=1+\frac{m}{b+c}\)
Mà \(\frac{m}{b}>\frac{m}{b+c}\) nên \(1+\frac{m}{b}>1+\frac{m}{b+c}\)
hay \(\frac{a}{b}>\frac{a+c}{b+c}\) (đpcm)
Theo cj nghĩ :
\(a>b\Rightarrow a-b>0\left(a;b\inℕ^∗\right)\)
Mà : \(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)}{b\left(b+c\right)}-\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{a\left(b+c\right)-b\left(a+c\right)}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}>0\)
Do đó : \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
Vì a chia hết cho b => a =kb (k thuộc N* )
b chia hết cho a => b=ka (k thuộc N* )
=> \(a\ge b\)và \(b\ge a\)
=>a = b (ĐPCM)
Vì số chính phương chia 3 dư 1 hoặc 0 (tự c/m)
Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là
(0;0); (0;1); (1;0) hoặc (1;1)
Vì a2 + b2 chia hết 3 nên ta nhận cặp (0;0)
=> a,b đều chia hết 3 (đpcm)
Ta có:\(\frac{a}{b}< \frac{a+n}{b+n}\Rightarrow a\left(b+n\right)< b\left(a+n\right)\)
\(\Rightarrow ab+an< ba+bn\)
\(\Rightarrow an< bn\Rightarrow a< b\Rightarrow\frac{a}{b}< 1\)(đúng)
\(\Rightarrowđpcm\)