Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài: p là số nguyên tố lớn hơn 3
=> p là số lẻ
=> p = 2k + 1 ( \(k\in z;k>1\))
=> A = (p - 1)( p +1 ) = 2k(2k+2) = 4k(k+1)
=> A chia hết cho 8 (1)
Ta lại có: p = 3n + 1 hoặc 3n - 1 (\(n\in Z,N>1\))
=> A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 24
Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:
A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.
Ta có: p = 3h + 1 hoặc 3h – 1 (h nguyên và h > 1) suy ra A chia hết cho 3.
Vậy A = (p – 1)(p + 1) chia hết cho 24
Vì p nguyên tố > 5 nên p lẻ => p + 1 chẵn => p + 1 chia hết cho 2 (1)
Xét 3 số tự nhiên liên tiếp: p; p + 1; p + 2, trong 3 số này có 1 số chia hết cho 3
Do p và p + 2 nguyên tố > 5 nên 2 số này đều không chia hết cho 3
=> p + 1 chia hết cho 3 (2)
Từ (1) và (2), mà (2;3)=1 => p + 1 chia hết cho 6 (đpcm)
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
k nếu đúng nhé!
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
với p.q là số nguyên tố lớn hơn 5 chứng minh rằng p4-q4 chia hếcho 240
giúp mình với nhé
Thử nha :33
Do a không chia hết cho 3 nên \(\orbr{\begin{cases}a=3k+1\\a=3k+2\end{cases}\left(k\inℤ\right)}\)
Với \(a=3k+1\) thì : \(P\left(x\right)=x^3-\left(3k+1\right)^2.x+2016b\)
\(=x^3-9k^2x-6k-x+2016b\)
\(=x\left(x-1\right)\left(x+1\right)-9k^2x-6kx+2016b⋮3\)
Với \(a=3k+2\) thi \(P\left(x\right)=x^3-\left(3k+2\right)^2.x+2016b\)
\(=x^3-9k^2x-12kx-4x+2016b\)
\(=x\left(x^2-4\right)-9k^2x-12kx+2016b\)
\(=\left(x-2\right)x\left(x+2\right)-9k^2x-12kx+2016b⋮3\)
Vậy ta có điều phải chứng minh.
\(2.\left(a^2+b^2\right)-1⋮a+b+1\left(a+b+1\in Z\right)\)
\(\Leftrightarrow2a^2+2b^2-1⋮a+b+1\Leftrightarrow\left(2b\right)^2-1^2⋮a+b+1\)
\(\Leftrightarrow\left(2b-1\right).\left(2b+1\right)⋮2b+1\left(\text{luôn đúng}\right)\)
p/s: ko bt cách c/m này đc ko nx...
=> p = 2
2 + a + 2 + 2 + 2a
= 6 + 3a
6 chia hết cho 2
3a chia hết cho 3
=> a chia hết cho 6