K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

Xem lại đề.

Nếu \(P\left[Q\left(x\right)\right]=0\)với mọi x thì

\(P\left(2005\right)=0< \frac{1}{64}\)

11 tháng 9 2017

mình đang phân vân nhưng cx góp ý kiến nha :D

ta có P(x) có 3 nghiệm phân biệt và P(Q(x))=0 nên Q(x) có 3 giá trị lần lượt là nghiệm của P(x)

ko biết cái này cs giúp ích hay không nhưng nhìn vào đề đã thấy như vậy

20 tháng 10 2019

1,Giải sử x0 là nghiệm chung của hai pt

Ta có hệ: \(\left\{{}\begin{matrix}x_0^2-\left(m+2\right)x_0+3m-1=0\left(1\right)\\x_0^2-\left(2m+3\right)x_0+3m+3=0\end{matrix}\right.\)

=> \(\left(2m+3\right)x_0-\left(m+2\right)x_0+3m-1-3m-3=0\)

<=> \(x_0\left(m+1\right)-4=0\)

Do hai pt có nghiệm chung => \(x_0\in R\) => \(m\ne-1\)

<=> \(x_0=\frac{4}{m+1}\) thay vào (1) có

\(\frac{16}{\left(m+1\right)^2}-\frac{\left(m+2\right).4}{m+1}+3m-1=0\)

<=> \(\frac{16}{\left(m+1\right)^2}-\frac{4\left(m+2\right)\left(m+1\right)}{\left(m+1\right)^2}+\frac{3m\left(m+1\right)^2}{\left(m+1\right)^2}-\frac{\left(m+1\right)^2}{\left(m+1\right)^2}=0\)

<=> \(16-4\left(m^2+3m+2\right)+3m\left(m^2+2m+1\right)-\left(m^2+2m+1\right)=0\)

<=> \(16-4m^2-12m-8+3m^3+6m^2+3m-m^2-2m-1=0\)

<=> \(3m^3+m^2-11m+7=0\)

<=> \(3m^3-3m^2+4m^2-4m-7m+7=0\)

<=>\(3m^2\left(m-1\right)+4m\left(m-1\right)-7\left(m-1\right)=0\)

<=> \(\left(m-1\right)\left(3m^2+4m-7\right)=0\)

<=> \(\left(m-1\right)^2\left(3m+7\right)=0\)

<=> \(\left[{}\begin{matrix}m=1\\m=-\frac{7}{3}\end{matrix}\right.\)

20 tháng 10 2019

@@ cái gì vậy!!

9 tháng 11 2018

Áp dụng định lí viet: \(x_1+x_2=-\frac{b}{a},x_1.x_2=\frac{c}{a}\)

\(ax^2+bx+c=a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=a\left(x^2-\left(x_1+x_2\right)x+x_1.x_2\right)=a\left[\left(x^2-x_1.x\right)-\left(x_2x-x_1x_2\right)\right]\)

=\(a\left[x\left(x-x_1\right)-x_2\left(x-x_1\right)\right]=a\left(x-x_1\right)\left(x-x_2\right)\)