K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2021

Ta có \(\Delta'=m^2-(m-3)=m^2-m+3>0\) nên pt luôn có 2 nghiệm phân biệt

Ta có \(\left|x_1\right|=\left|x_2\right|\Leftrightarrow\left[{}\begin{matrix}x_1=x_2\left(loại\right)\\x_1+x_2=0\end{matrix}\right.\).

Do đó \(x_1+x_2=0\Leftrightarrow\dfrac{2m}{1}=0\Leftrightarrow m=0\).

Vậy m = 0.

10 tháng 5 2022

Áp dụng hệ thức vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=m-1\end{matrix}\right.\)

Ta có:

\(x_1^2+x^2_2=30\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=30\)

\(\Leftrightarrow4^2-2\left(m-1\right)=30\)

\(\Leftrightarrow2m-2=-14\)

\(\Leftrightarrow m=-6\)

10 tháng 5 2022

Áp dụng hệ thức vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=m-1\end{matrix}\right.\)

Ta có:

\(x_1^2+x^2_2=30\)

\(\left(x_1+x_2\right)^2-2x_1.x_2=30\)

\(4^2-2\left(m-1\right)=30\)

\(2m-2=-14\)

\(m=-6\)

DD
10 tháng 5 2022

Để phương trình đã cho có hai nghiệm \(x_1,x_2\) thì 

\(\Delta'>0\Leftrightarrow2^2-\left(m-1\right)=5-m>0\Leftrightarrow m< 5\)

Khi \(m< 5\) phương trình đã cho có hai nghiệm \(x_1,x_2\).

Theo định lí Viete ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)

Ta có: 

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(m-1\right)=18-2m=30\)

\(\Leftrightarrow m=-6\) (thỏa mãn) 

NV
26 tháng 3 2022

\(ac=-1< 0\Rightarrow\) pt luôn có 2 nghiệm pb trái dấu với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)

a.

\(x_1^2+x_2^2-x_1x_2=7\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)

\(\Leftrightarrow4m^2+3=7\)

\(\Rightarrow m^2=1\Rightarrow m=\pm1\)

b.

\(x_1-x_2=0\Rightarrow x_1=x_2\Rightarrow x_1x_2=x_2^2\ge0\) (vô lý do \(x_1x_2=-1< 0\) với mọi m)

Vậy ko tồn tại m thỏa mãn yêu cầu

2 tháng 5 2022

a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)

pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\) 

Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)

b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)

Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)

Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)

Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)

23 tháng 2 2022

a, Thay m=3 vào pt ta có:

\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)

b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

 

17 tháng 3 2022

ê phải n.nam 9c ko

 

19 tháng 5 2021

Để pt có hai nghiệm \(x_1;x_2\Leftrightarrow\Delta\ge0\)

 \(\Leftrightarrow4-m^2\ge0\) \(\Leftrightarrow m\in\left[-2;2\right]\)

Theo định lí viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)

\(H=2x_1x_2-x_1-x_2+9=m^2-2-m+9\)\(=m^2-m+7\)

Ta thấy H là một parabol và m nằm trong \(\left[-2;2\right]\) ,max của chúng sẽ chỉ ở vị trí m=-2 hoặc m=2 

Tại m=-2 thì H=13

Tại m=2 thì H=9
Vậy maxH=132 khi m=-2 

(Mình chỉ biets trình bày cách này thôi, nếu bạn biết vẽ bảng biến thiên sẽ dễ hơn)