K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2020

a/

\(x^3-2mx^2+2x^2-8x+8m-16=0\)

\(\Leftrightarrow\left(x^3+2x^2-8x-16\right)+m\left(-2x^2+8\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-8\right)-2m\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2-8-2m\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2mx+4m-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x^2-2mx+4m-8=0\left(1\right)\end{matrix}\right.\)

Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb khác -2

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-2\right)^2+4m+4m-8=0\\\Delta'=m^2-4m+8>0\end{matrix}\right.\) (luôn thỏa mãn)

Vậy pt có 3 nghiệm pb với mọi m

b/ Do vai trò của \(x_1;x_2;x_3\) hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x_1=-2\)\(x_2;x_3\) là 2 nghiệm của (1)

\(\Rightarrow\left\{{}\begin{matrix}x_2+x_3=2m\\x_2x_3=4m-8\end{matrix}\right.\) (2)

\(\left(-2\right)^2+\left(x_2+x_3\right)^2-2x_2x_3=5\left(-2+x_2+x_3\right)-4\) (3)

Thế (2) vào (3) là xong

18 tháng 9 2020

Tặng anh trái tim to bự nè
Chương 2: HÀM SỐ BẬC NHẤT VÀ BẬC HAI

12 tháng 12 2021

Sửa đề: \(\dfrac{x_1x_2}{x_1+x_2}=-\dfrac{m^2}{2}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow\left(m-3\right)^2+4\left(2m^2-3m\right)>0\\ \Leftrightarrow9m^2-18m+9>0\\ \Leftrightarrow9\left(m-1\right)^2>0\left(\text{luôn đúng},\forall m\ne1\right)\)

Do đó PT có 2 nghiệm phân biệt với mọi \(m\ne1\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=3-m\\x_1x_2=3m-2m^2\end{matrix}\right.\)

Ta có \(\dfrac{x_1x_2}{x_1+x_2}=-\dfrac{m^2}{2}\Leftrightarrow\dfrac{3m-2m^2}{3-m}=-\dfrac{m^2}{2}\)

\(\Leftrightarrow4m^2-12m=3m^2-m^3\\ \Leftrightarrow m^3+m^2-12m=0\\ \Leftrightarrow m\left(m^2+4m-3m-12\right)=0\\ \Leftrightarrow m\left(m+4\right)\left(m-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\\m=3\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=0\\m=-4\\m=3\end{matrix}\right.\) thỏa yêu cầu đề

8 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

NV
20 tháng 1 2022

\(\Delta=\left(3m+2\right)^2-12m=9m^2+4>0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3m-2\\x_1x_2=3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\x_1x_2+x_1+x_2+1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\\left(x_1+1\right)\left(x_2+1\right)=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x_1+1=a\\x_2+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=-3m\\ab=-1\end{matrix}\right.\)

\(Q=a^4+b^4\ge2a^2b^2=2\)

Dấu "=" xảy ra khi \(a^2=b^2\Rightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=-b\end{matrix}\right.\)

\(\Rightarrow-3m=0\Rightarrow m=0\)

NV
30 tháng 12 2020

\(\Delta=\left(m-1\right)^2-4\left(m+3\right)=m^2-6m-11>0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+3\end{matrix}\right.\)

Ta có:

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m-1\right)^2-2\left(m+3\right)=m^2-4m-5\)

Biểu thức này ko tồn tại cả min lẫn max với điều kiện m từ (1)