K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2019

Ta có:  \(\Delta=\) \(\left(m-2\right)^2+4.8>0\)

=> Phương trình luôn có hai nghiệm \(x_1;x_2\)phân biệt.

Áp dụng định lí Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m+2\\x_1.x_2=-8\end{cases}}\)=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-m+2\right)^2+16\)

Khi đó: \(Q=\left(x_1^2-1\right)\left(x_2^2-1\right)=x_1^2.x_2^2-\left(x_1^2+x_2^2\right)+1=8^2-\left(m-2\right)^2-16+1\)

\(=-\left(m-2\right)^2+49\le49\)

Vậy min Q = 49 tại m=2

NV
10 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-3\end{matrix}\right.\)

Ta có: \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\ge0\)

\(\Rightarrow P_{min}=0\) khi \(x_1+x_2=0\Leftrightarrow m=-1\)

Đề là yêu cầu tìm max hay min nhỉ? Min thế này thì có vẻ là quá dễ

29 tháng 5 2022

1.Thế `m=2` vào pt, ta được:

\(x^2-2\left(2-1\right)x+2-5=0\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) ( Vi-ét )

2.

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

\(P=\left|x_1-x_2\right|\)

\(\Leftrightarrow P^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(\Leftrightarrow P^2=\left[2\left(m-1\right)\right]^2-4\left(m-5\right)\)

\(\Leftrightarrow P^2=4\left(m-1\right)^2-4\left(m-5\right)\)

\(\Leftrightarrow P^2=4m^2-8m+4-4m+20\)

\(\Leftrightarrow P^2=4m^2-12m+24\)

\(\Leftrightarrow P^2=\left(2m-3\right)^2+15\)

\(P^2\ge15\)

mà \(P\ge0\)

\(\Rightarrow Min_P=\sqrt{15}\)

Dấu "=" xảy ra khi \(2m-3=0\) \(\Leftrightarrow m=\dfrac{3}{2}\)

Vậy \(Min_P=\sqrt{15}\) khi \(m=\dfrac{3}{2}\)

 

29 tháng 5 2022

\(x^2-2(m-1)x+m-5=0\ \ (1) \\1)Thay\ m=2\ vào\ (1)\ ta\ có: \\x^2-2(2-1)x+2-5=0 \\<=>x^2-2x-3=0<=>(x+1)(x-3)=0<=>x=-1\ hoặc\ x=3 \\2)\triangle'=[-(m-1)]^2-1.(m-5)=m^2-3m+6>0\ với\ mọi\ m \\->Phương\ trình\ (1)\ luôn\ có\ 2\ nghiệm\ phân\ biệt\ với\ mọi\ m. \\Theo\ hệ\ thức\ Vi-ét\ ta\ có: \\x_1+x_2=2(m-1);x_1x_2=m-5 \)

\(Ta\ có: P^2=x_1^2-2x_1x_2+x_2^2=(x_1+x_2)^2-4x_1x_2 \\=[2(m-1)]^2-4(m-5)=4(m-\dfrac{3}{2})^2+15\ge15 \\->P\ge\sqrt{15} \\Đẳng\ thức\ xảy\ ra\ khi\ m=\dfrac{3}{2}. \\Vậy\ P\ nhỏ\ nhất\ bằng\ \sqrt{15}\ (khi\ m=\dfrac{3}{2}).\)

25 tháng 2 2022

\(\Delta=\left(m-2\right)^2+8>0\) với mọi m . Vậy pt có 2 nghiệm phân biệt với mọi m 

Do : \(x_1x_2=-8\) nên \(x_2=\dfrac{-8}{x1}\)

\(Q=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\dfrac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\dfrac{16}{x_1^2}\right)\le68-4.8=36\)

\(\left(x_1^2+\dfrac{16}{x_1^2}\ge8\right)\)\(;Q=36\) khi và chỉ khi x1 = ( 2 ; -2 )

 

10 tháng 6 2016

Áp dụng hệ thức Vi-et, ta có : 

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)

Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.

Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)

Suy ra \(MinA^2=0\Leftrightarrow m=-1\) 

Vậy Min A = 0 \(\Leftrightarrow\)m = -1

10 tháng 6 2016

ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét

1 tháng 6 2023

Phương trình có : \(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(-2\right)\)

\(\Rightarrow\Delta=\left(m+1\right)^2+8>0\)

Suy ra phương trình có hai nghiệm phân biệt với mọi \(m\).

Theo định lí Vi-ét : \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=-2\end{matrix}\right.\)

Theo đề bài : \(\left(1-\dfrac{2}{x_1+1}\right)^2+\left(1-\dfrac{2}{x_2+1}\right)^2=2\)

\(\Leftrightarrow\dfrac{\left(x_1-1\right)^2}{\left(x_1+1\right)^2}+\dfrac{\left(x_2-1\right)^2}{\left(x_2+1\right)^2}=2\)

\(\Leftrightarrow\dfrac{\left[\left(x_1-1\right)\left(x_2+1\right)\right]^2+\left[\left(x_2-1\right)\left(x_1+1\right)\right]^2}{\left[\left(x_1+1\right)\left(x_2+1\right)\right]^2}=2\)

\(\Leftrightarrow\left[\left(x_1-1\right)\left(x_2+1\right)\right]^2+\left[\left(x_2-1\right)\left(x_1+1\right)\right]^2-2\left[\left(x_1+1\right)\left(x_2+1\right)\right]^2=0\)

\(\Leftrightarrow\left(x_2+1\right)^2\left[\left(x_1-1\right)^2-\left(x_1+1\right)^2\right]+\left(x_1+1\right)^2\left[\left(x_2-1\right)^2-\left(x_2+1\right)^2\right]=0\)

\(\Leftrightarrow-4x_1\left(x_2+1\right)^2-4x_2\left(x_1+1\right)^2=0\)

\(\Leftrightarrow x_1x_2^2+2x_1x_2+x_1+x_1^2x_2+2x_1x_2+x_2=0\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)+4x_1x_2+\left(x_1+x_2\right)=0\)

\(\Rightarrow-2\left(m+1\right)+4\cdot\left(-2\right)+m+1=0\)

\(\Leftrightarrow m=-9\)

Vậy : \(m=-9.\)

10 tháng 4 2023

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

<=> \(\left[-\left(2m+5\right)\right]^2-4.1.\left(2m+1\right)>0\)

\(\Leftrightarrow4m^2+12m+21>0\)

\(\Leftrightarrow4m^2+12m+9+12>0\)

<=> \(\left(2m+3\right)^2+12>0\)

Vì (2m+3)2 luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình đã cho có nghiệm với mọi giá trị m.

Theo viét:

\(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=2m+1\end{matrix}\right.\)

Theo đề:

\(M=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) (điều kiện: \(x_1;x_2\ge0\))

=> \(M^2=x_1+x_2-2\sqrt{x_1x_2}=2m+5-2\sqrt{2m+1}\)

<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}\right)-2\sqrt{\left(2m+1\right)}+4\)

<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}-2\right)+4\)

<=> \(M^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)

=> \(M\ge2\).

Dấu "=" xảy ra khi m = 0

Thế m = 0 vào phương trình ở đề được:

\(x^2-5x+1=0\)

Phương trình này có hai nghiệm dương -> thỏa mãn điều kiện.

Vậy min M = 2 và m = 0

T.Lam

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)