K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Giả sử pt: \(x^2+bx+c=0\) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn đề bài.

Theo hệ thức Vi - ét ta có: \(x_1+x_2=-b\) và \(x_1x_2=c\)

Kết hợp với giải thiết ta có: \(x_1=x^2_2+x_2\) và \(b+c=4\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)=4\)

\(\Leftrightarrow x^3_2-2x_2-4=0\)

\(\Leftrightarrow\left(x_2-2\right)\left(x^2_2+2x_2+2\right)=0\)

\(\Leftrightarrow x_2=2\)(Vì: \(x^2_2+2x_2+2=\left(x_2+1\right)^2+1>0\))

Khi đó ta có: \(x_1=4+2=6\Rightarrow b=-8\)và \(c=12\)

Thử lại với \(b=-8;c=12\)ta được pt sau:

\(x^2-8x+12=0\)

\(\Leftrightarrow x_1=6;x_2=2\)(Thỏa mãn yêu cầu bài toán)

Vậy \(\left(b,c\right)=\left(-8;12\right)\) là cặp cần tìm.

5 tháng 7 2021

a, x = 3 , x= -1

b, m = 3 , m = 1

28 tháng 2 2022

Đăng lại lớp đi chụy :)

28 tháng 2 2022

Ấn nhầm kk

14 tháng 3 2022

a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0 

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)

Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)

 

14 tháng 3 2022

Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.

29 tháng 4 2023

\(x^2-2\left(m+4\right)x+m^2+8m-9=0\left(1\right)\)

Ta giải \(\Delta=[-2\left(m+4\right)]^2-4\left(m^2+8m-9\right)=100>0\forall m\)

suy ra pt có 2 nghiệm phân biệt \(x_1,x_2\forall m\).

Ta có: \(x_1=m-1\)\(x_2=m+1\) (thay \(\Delta\) vào công thức tìm nghiệm phân biệt).

Gọi \(A=\dfrac{x_1^2+x_2^2-48}{x_1^2+x_2^2}\).

\(\Rightarrow A=1-\dfrac{48}{x_1^2+x_2^2}=1-\dfrac{48}{\left(m-1\right)^2+\left(m+1\right)^2}=1-\dfrac{24}{m^2+1}\).

Để biểu thức A nguyên thì \(\dfrac{24}{m^2+1}\) nguyên, suy ra \(m^2+1\inƯ\left(24\right)\).

\(\Rightarrow m^2+1\in\left\{1;2;4;6;8;12;24\right\}\)

\(\Rightarrow m\in\left\{0;\pm1\right\}\) (vì m nhận giá trị nguyên)

Vậy \(m\in\left\{0;\pm1\right\}\) là giá trị cần tìm.

7 tháng 5 2023

Mình chỉnh sửa lại một chút nhé.

\(A=1-\dfrac{24}{m^2+2}\)

\(\Rightarrow...\)\(\Rightarrow\)\(m^2+2\in\left\{1;2;3;4;6;8;12;24\right\}\)

\(\Rightarrow m\in\left\{0;\pm1;\pm2\right\}\)

Vậy...

8 tháng 4 2021

a, \(x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy tập nghiệm của phương trình là S = { 1 ; 3 } 

b, Ta có : \(\Delta=\left(2m+2\right)^2-4\left(2m-5\right)=4m^2+8m+4-8m+20=4m^2+24>0\forall m\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=2m-5\end{cases}}\)

Ta có : \(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19.1=1.19\)

TH1 : \(\hept{\begin{cases}x_1^2-2mx_1-x_2+2m-3=19\\x_2^2-2mx_2-x_1+2m-3=1\end{cases}}\)

Lấy phương trình (1) + (2) ta được : 

\(x_1^2+x_2^2-2mx_1-2mx_2-x_2-x_1+4m-6=20\)

mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)

\(=4m^2+8m+4-2\left(2m-5\right)=4m^2+4m-6\)

\(\Leftrightarrow4m^2+4m-6-2m\left(2m-2\right)-\left(2m-2\right)+4m-6=20\)

\(\Leftrightarrow4m^2+4m-6-4m^2+4m-2m+2+4m-6=20\)

\(\Leftrightarrow10m=30\Leftrightarrow m=3\)tương tự với TH2, nhưng em ko chắc lắm vì dạng này em chưa làm bao giờ 

30 tháng 6 2021

x=1 và x=3

4 tháng 6 2017
  1. \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
  2. Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
  3. từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
  4. \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
NV
23 tháng 4 2021

\(\Delta=a^2-4\left(b+2\right)>0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-a\\x_1x_2=b+2\end{matrix}\right.\) (1)

\(\left\{{}\begin{matrix}x_1-x_2=4\\\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\64+12x_1x_2=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\x_1x_2=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=3\\x_2=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_1=1\\x_2=-3\end{matrix}\right.\)

Thế vào (1) để tìm a; b

NV
28 tháng 2 2023

Ta có \(ac=-m^2-2< 0\) ; \(\forall m\) nên pt đã cho luôn có 2 nghiệm trái dấu

Mà \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{matrix}\right.\)

\(\Rightarrow2\left|x_1\right|-\left|x_2\right|=4\Leftrightarrow-2x_1-x_2=4\)

Kết hợp với hệ thức Viet: \(x_1+x_2=-m+1\)

\(\Rightarrow\left\{{}\begin{matrix}-2x_1-x_2=4\\x_1+x_2=-m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x_1=-m+5\\x_1+x_2=-m+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=m-5\\x_2=-2m+6\end{matrix}\right.\)

Thay vào \(x_1x_2=-m^2-2\)

\(\Rightarrow\left(m-5\right)\left(-2m+6\right)=-m^2-2\)

\(\Leftrightarrow m^2-16m+28=0\Rightarrow\left[{}\begin{matrix}m=2\\m=14\end{matrix}\right.\)

28 tháng 2 2023

 E cảm ơn thầy ạ!