K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2021

\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+m\right)=m^2+2m+1-m^2-m\)

\(=m+1\)

pt có nghiệm x1,x2 \(< =>m+1\ge0< =>m\ge-1\)

vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m+2\\x1x2=m^2+m\end{matrix}\right.\)

a,\(=>2m+2=m^2+m< =>m^2-m-2=0\)

\(a-b+c=0=>\left[{}\begin{matrix}m1=-1\\m2=2\end{matrix}\right.\left(tm\right)\)

b,\(< =>3\left(2m+2\right)-2\left(m^2+m\right)-1=0\)

\(< =>-2m^2+4m+5=0\)

\(ac< 0\) pt có 2 nghiệm pbiet \(=>\left[{}\begin{matrix}m1=...\\m2=...\end{matrix}\right.\) thay số vào tính m1,m2 đối chiếu đk

25 tháng 2 2022

a, bạn tự làm 

b, \(\Delta'=\left(m+2\right)^2-\left(m^2+m+3\right)=m^2+4m+4-m^2-m-3\)

\(=3m+1\)để pt có 2 nghiệm \(m\ge-\dfrac{1}{3}\)

Ta có \(\dfrac{x_1^2+x_2^2}{x_1x_2}=4\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\Rightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)

\(\Rightarrow4\left(m+2\right)^2-6\left(m^2+m+3\right)=0\)

\(\Leftrightarrow4m^2+16m+16-6m^2-6m-18=0\)

\(\Leftrightarrow-2m^2+10m-2=0\Leftrightarrow m^2-5m+1=0\Leftrightarrow m=\dfrac{5\pm\sqrt{21}}{2}\)(tm) 

NV
27 tháng 3 2021

Đề bài sai bạn

Biểu thức \(\left|\dfrac{x_1+x_2+4}{x_1+x_2}\right|=\left|1+\dfrac{1}{m}\right|\)  này ko tồn tại max, chỉ tồn tại min

27 tháng 3 2021

Chúc thầy buổi tối vui vẻ . Thầy giúp em câu em vừa inb nhé !

Và cho em hỏi là thứ 2 từ 7-9h sáng thầy có online không ạ ?

NV
21 tháng 3 2022

\(\Delta'=\left(m-1\right)^2+2m=m^2+1>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m\end{matrix}\right.\)

Cộng vế với vế: \(x_1x_2+x_1+x_2=-2\) (1)

\(x_1^2+x_1-x_2=5-2m\)

\(\Leftrightarrow x_1^2+x_1-x_2=5+x_1x_2\) (2)

Cộng vế với vế (1) và (2):

\(\Rightarrow x_1^2+2x_1=3\)

\(\Leftrightarrow x_1^2+2x_1-3=0\Rightarrow\left[{}\begin{matrix}x_1=1\Rightarrow x_2=-\dfrac{3}{2}\\x_1=-3\Rightarrow x_2=-\dfrac{1}{2}\end{matrix}\right.\) (thế \(x_1\) vào (1) để tính ra \(x_2\))

Thế vào \(x_1x_2=-2m\Rightarrow m=-\dfrac{x_1x_2}{2}\Rightarrow m=\pm\dfrac{3}{4}\)

15 tháng 2 2022

Ptrình :  \(x^2-7x+10=0\)

Ta có : \(\Delta=\left(-7\right)^2-4.1.10=9>0\)

=> Phương trình có 2 nghiệm phân biệt \(x1\) và \(x2\)

\(x1=\dfrac{-\left(-7\right)+\sqrt{\Delta}}{2.1}=\dfrac{7+\sqrt{9}}{2}=5\)

\(x2=\dfrac{-\left(-7\right)-\sqrt{\Delta}}{2.1}=\dfrac{7-\sqrt{9}}{2}=2\)

Vậy :

A = \(x_1^2+x_2^2+3x_1x_2=5^2+2^2+3.5.2=59\)  

B = .................

.... (có x1 và x2 rồi thik thay vào lak tính đc, cái này bn tự tính nha)

NV
15 tháng 4 2022

\(\Delta'=\left(2m+1\right)^2-\left(4m^2+4m\right)=1>0;\forall m\Rightarrow\) pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(2m+1\right)\\x_1x_2=4m^2+4m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=x_1+x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2\ge0\\\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(2m+1\right)\ge0\\-2x_1x_2=2x_1x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\x_1x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\4m^2+4m=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=0\\mm=-1< -\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

15 tháng 4 2022

Em cảm ơn ạ

4 tháng 3 2022

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

4 tháng 3 2022

?????