K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Đáp án A

a:Sửa đề: x^2-(m+1)x+2m-8=0

Khi m=2 thì (1) sẽ là x^2-3x-4=0

=>(x-4)(x+1)=0

=>x=4 hoặc x=-1

b: Δ=(-m-1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24>0

=>(1) luôn có hai nghiệm pb

\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2+4=11

=>m^2-2m=0

=>m=0 hoặc m=2

4 tháng 4 2016

quá dễ

NV
18 tháng 4 2021

\(\Delta'=1-4\left(m+1\right)=-4m-3>0\Rightarrow m< -\dfrac{3}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1^2+x_1x_2=7-3x_2\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)=7-3x_2\)

\(\Leftrightarrow x_1=7-3x_2\)

\(\Leftrightarrow x_1+x_2=7-2x_2\)

\(\Leftrightarrow1=7-2x_2\Rightarrow x_2=3\Rightarrow x_1=1-x_2=-2\)

Thế vào \(x_1x_2=m+1\Rightarrow-6=m+1\Rightarrow m=-7\)

15 tháng 10 2018

tham số là gì ??????????????????????

27 tháng 1 2023

Theo định lý Vi-ét, ta có:

 \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=2m-2\end{matrix}\right.\)

Ta có: \(x_1^2+2\left(m+1\right)x_2+2m-2\)\(=x1^2+x_1+x_2.x_2+x_1.x_2\) 

         \(=x_1^2+2x_1x_2+x_2^2=\left(x_1+x_2\right)^2\) \(=\left[2\left(m+1\right)\right]^2=4\left(m+1\right)^2\)

Ta có: \(4\left(m+1\right)^2=9\Leftrightarrow\left(m+1\right)^2=\dfrac{9}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}m+1=\dfrac{3}{2}\\m+1=\dfrac{-3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=\dfrac{-5}{2}\end{matrix}\right.\)

Vậy \(m=\dfrac{1}{2};m=\dfrac{-5}{2}\) thoả mãn yêu cầu đề bài

27 tháng 1 2023

Dấu bằng thứ nhất sau chữ ta có đầu tiên sửa thành: \(x_1^2+\left(x_1+x_2\right).x_2+x_1x_2\)