K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

a) mx2 – 2x – 4m – 1 = 0 (1)

Với m ≠ 0, ta có:

Δ’ = 1 + m.(4m + 1) = 4m2 + m + 1

Giải bài 6 trang 79 SGK Đại Số 10 | Giải toán lớp 10 với mọi m.

Hay phương trình (1) có hai nghiệm phân biệt với mọi m ≠ 0.

b) x = -1 là nghiệm của phương trình (1)

⇔ m.(-1)2 – 2.(-1) – 4m – 1 = 0

⇔ m + 2 - 4m = 0

⇔ -3m + 1 = 0

⇔ m = 1/3.

Vậy với m = 1/3 thì phương trình (1) nhận -1 là nghiệm.

Khi đó theo định lý Vi-et ta có: x2 + (-1) = 2/m (x2 là nghiệm còn lại của (1))

⇒ x2 = 2/m + 1= 6 + 1 = 7.

Vậy nghiệm còn lại của (1) là 7.

1 tháng 4 2017

Giải bài 2 trang 160 SGK Đại Số 10 | Giải toán lớp 10

a: Ta có: \(\left(m-1\right)x^2-2x-m+1=0\)

a=m-1; b=-2; c=-m+1

\(ac=\left(m-1\right)\left(-m+1\right)=-\left(m-1\right)^2< 0\forall m\)

Do đó: Phương trình luôn có hai nghiệm trái dấu

b: \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow\left(\dfrac{2}{m-1}\right)^2-2\cdot\dfrac{-m+1}{m-1}=6\)

\(\Leftrightarrow\dfrac{4}{\left(m-1\right)^2}=4\)

\(\Leftrightarrow\left(m-1\right)^2=1\)

=>m-1=1 hoặc m-1=-1

=>m=2 hoặc m=0

b) Theo hệ thức Vi ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m-2}{m}\\x_1.x_2=\dfrac{m-1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2-2m}{m}\\x_1.x_2=\dfrac{m-1}{m}\end{matrix}\right.\)

Ta có:

\(Q=\dfrac{1013}{x_1}+\dfrac{1013}{x_2}+1=1013\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)+1\)

\(=1013\left(\dfrac{x_1+x_2}{x_1.x_2}\right)+1=1013\left(\dfrac{\dfrac{2-2m}{m}}{\dfrac{m-1}{m}}\right)+1\)

\(=1013.\dfrac{-2\left(m-1\right)}{m-1}+1=-2026+1=-2025\), luôn là hằng số (đpcm)

12 tháng 9 2017

Phương trình đã cho nghiệm đúng với  hay phương trình có vô số nghiệm khi

m 2 − 3 m + 2 = 0 − ( m 2 + 4 m + 5 ) = 0 ⇔ m = 1 m = 2 m ∈ ∅ ⇔ m ∈ ∅

Đáp án cần chọn là: D

11 tháng 2 2017

Phương trình có 2 nghiệm x 1 ,   x 2  thỏa mãn x 1 + x 2 = 13 4

⇔ a ≠ 0 Δ ≥ 0 − b a = 13 4 ⇔ m ≠ 0 m 2 − 3 3 − 4 m 2 ≥ 0 − m 2 − 3 m = 13 4

⇔ m ≠ 0 m 2 − 3 − 2 m m 2 − 3 + 2 m ≥ 0 4 m 2 + 13 m − 12 = 0

⇔ m ≠ 0 m + 1 m − 3 m − 1 m + 3 ≥ 0 m = 3 4 ; m = − 4

⇔ m ≠ 0 m ∈ − ∞ ; − 3 ∪ − 1 ; 1 ∪ 3 ; + ∞ m = 3 4 ; m = − 4 ⇔ m = 3 4 m = − 4

Vậy tổng bình phương các giá trị của m là: 265 16

Đáp án cần chọn là: A

4 tháng 9 2021

hehe 1000000% dễễễễ

a:

\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)

\(=m^2-2m+1+8m+4=m^2+6m+5\)

Để (1) vô nghiệm thì (m+1)(m+5)<0

hay -5<m<-1

Để (1) có nghiệm thì (m+1)(m+5)>=0

=>m>=-1 hoặc m<=-5 

Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0

=>m>-1 hoặc m<-5

b: Để (1) có hai nghiệm phân biệt cùng dương thì

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

NV
20 tháng 1 2022

c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)

14 tháng 1 2017

*Xét phương trình  (m2 +1).x2 – (m- 6)x -  2= 0 có a= m2 + 1 >0  và c = -2 < 0 nên ac< 0 mọi m.

=>  Phương trình (1) luôn có nghiệm mọi m.

* Phương trình x 2 + m + 3 x - 1 = 0  có ac= 1. (-1) < 0 nên phương  trình này luôn có nghiệm mọi m.

* Xét (3) mx2 - 2x – m = 0  . Khi m= 0 thì (3) trở thành:  - 2x = 0 đây là phương trình bậc nhất có nghiệm duy nhất là x = 0.

* Xét (4) có :

∆ = - 2 m 2 - 4 . 2 - 1 - m = 4 m 2 + 8 + 8 m = 4 m 2 + 8 m + 4 + 4 = 4 m + 1 2 + 4 > 0   ∀ m

 Nên trình (4) luôn có 2 nghiệm phân biệt với mọi m.

Chọn C.

NV
13 tháng 12 2020

\(x^4-1-mx^2+m=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-m\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=m-1\end{matrix}\right.\)

Pt có 4 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ne2\end{matrix}\right.\)

Khi đó ta có: 

\(\left|x_1-x_2\right|=\left|1-\sqrt{m-1}\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}1-\sqrt{m-1}=1\\1-\sqrt{m-1}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=5\end{matrix}\right.\)

Vậy \(m_0=5\)