Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với k = 1, ta có phương trình:
(3x – 3)(x – 2) = 0 ⇔ 3x – 3 = 0 hoặc x – 2 = 0
3x – 3 = 0 ⇔ x = 1
x – 2 = 0 ⇔ x = 2
Vậy phương trình có nghiệm x = 1 hoặc x = 2
Với k = 2/3 , ta có phương trình:
(3x - 11/3 )(x – 1) = 0 ⇔ 3x - 11/3 = 0 hoặc x – 1 = 0
3x - 11/3 = 0 ⇔ x = 11/9
x – 1 = 0 ⇔ x = 1
Vậy phương trình có nghiệm x = 11/9 hoặc x = 1.
Thay x = 1 vào phương trình (3x + 2k – 5)(x – 3k + 1) = 0, ta có:
(3.1 + 2k – 5)(1 – 3k + 1) = 0
⇔ (2k – 2)(2 – 3k) = 0 ⇔ 2k – 2 = 0 hoặc 2 – 3k = 0
2k – 2 = 0 ⇔ k = 1
2 – 3k = 0 ⇔ k = 2/3
Vậy với k = 1 hoặc k = 2/3 thì phương trình đã cho có nghiệm x = 1
a) Để phương trình \(\left(2x+1\right)^2\cdot\left(9x+2k\right)-5\left(x+2\right)=40\) có nghiệm là x=2 thì Thay x=2 vào phương trình \(\left(2x+1\right)^2\cdot\left(9x+2k\right)-5\left(x+2\right)=40\), ta được:
\(\left(2\cdot2+1\right)^2\cdot\left(9\cdot2+2k\right)-5\left(2+2\right)=40\)
\(\Leftrightarrow25\cdot\left(2k+18\right)-20=40\)
\(\Leftrightarrow25\left(2k+18\right)=60\)
\(\Leftrightarrow2k+18=\dfrac{12}{5}\)
\(\Leftrightarrow2k=-\dfrac{78}{5}\)
hay \(k=\dfrac{-39}{5}\)
Vậy: \(k=\dfrac{-39}{5}\)
`B4:`
`a)` Thay `x=3` vào ptr:
`3^3-3^2-9.3-9m=0<=>m=-1`
`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`
`<=>x^2(x-1)-9(x-1)=0`
`<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`
`B5:`
`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`
`<=>-8+2m^2-2m+14-3m^2+3m+6=0`
`<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`
`b)`
`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`
`<=>x^3-19x-30=0`
`<=>x^3-5x^2+5x^2-25x+6x-30=0`
`<=>(x-5)(x^2+5x+6)=0`
`<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`
`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`
`<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`