K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2022

\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)=0\\ \Leftrightarrow x^2-ax-bx+ab+x^2-bx-cx+bc+x^2-cx-ax+ac=0\\ \Leftrightarrow3x^2-2\left(a+b+c\right)x+ab+bc+ca=0\left(1\right)\)

pt(1) là pt bậc 2 ẩn x có:

\(\Delta'=\left(-a-b-c\right)^2-3\left(ab+bc+ca\right)\\ =a^2+b^2+c^2+2ab+2bc+2ca-3\left(ab+bc+ca\right)\\ =a^2+b^2+c^2-ab-bc-ca\\ =\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

pt có no kép nên delta' =0

nên: \(\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\\ \Rightarrow a-b=b-c=c-a=0\\ \Rightarrow a=b=c\)

bonus: khi đó pt: \(3\left(x-a\right)^2=0\Leftrightarrow x-a=0\Leftrightarrow x=a\)

=> x=a=b=c

22 tháng 3 2019

kb nhé

8 tháng 5 2019

12345x331=...///???......................ai nhanh  mk tk cho

2 tháng 5 2016

pt<=> x^2-ax-bx+ab+x^2-bx-cx+bc+x^2-xc-ax+ac=0

<=>3x^2-x(a+b+b+c+c+a)+ab+bc+ac=0

đenta phẩy=(a+b+c)^2-3*(ab+bc+ac)

giải ra thay vô pt nghiệm là dc

2 tháng 5 2016

tìm ra a=b=c rùi sao nữa nhỉ

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_- 

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

a) Khi $m=1$ thì pt trở thành:

$x^2-2x-5=0$

$\Leftrightarrow (x-1)^2=6$

$\Rightarrow x=1\pm \sqrt{6}$ 

b) Để $x_1=3$ là nghiệm của pt thì:

$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$

Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$

c) 

$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$

Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$

Khi đó: 

Để $x_1^2+x_2^2=13$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$

$\Leftrightarrow (2m)^2-2(2m-7)=13$

$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$

d) 

$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$

$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$

 

17 tháng 11 2017

Các giải của các bài toán này là sử dụng tổng các delta em nhé