K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

Xét phương trình bậc hai một ẩn

ax2 + bx + c = 0 (a ≠ 0) và biệt thức = b2 – 4ac

TH1: Nếu < 0 thì phương trình vô nghiệm

TH2. Nếu = 0 thì phương trình

có nghiệm kép x1 = x2 = − b 2 a

TH3: Nếu > 0 thì phương trình

có hai nghiệm phân biệt x1, 2 = − b ± Δ 2 a

Đáp án cần chọn là: C

12 tháng 7 2017

a) Nếu Δ > 0 thì từ phương trình (2) suy ra x + b/2a = ± √Δ/2a

Do đó,phương trình (1) có hai nghiệm  x 1   =   ( - b   +   √ Δ ) / 2 a ;   x 2   =   ( - b - √ Δ ) / 2 a

b) Nếu Δ = 0 thì từ phương trình (2) suy ra  ( x   +   b / 2 a ) 2   = 0

Do đó,phương trình (1) có nghiệm kép x = (-b)/2a

30 tháng 3 2018

a) Phương trình  x 2   –   2 ( m   –   1 ) x   +   m 2   =   0  (1)

Có a = 1; b’ = -(m – 1);  c   =   m 2

b) Phương trình (1):

+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Phương trình (1) có hai nghiệm phân biệt khi m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9; có nghiệm kép khi m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 và vô nghiệm khi m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

20 tháng 7 2019

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0)

với b = 2b’ và biệt thức  Δ ' = b ' 2 − a c

Trường hợp 1: Nếu ∆ < 0 thì phương trình vô nghiệm

Trường hợp 2: Nếu = 0 thì phương trình có nghiệm kép x1 = x2 = − b ' a

Trường hợp 3: nếu > 0 thì phương trình có hai nghiệm phân biệt

x1,2 = − b ' ± Δ ' a

Đáp án cần chọn là: A

20 tháng 12 2017

a)  2 x 2   –   17 x   +   1   =   0

Có a = 2; b = -17; c = 1

Δ   =   b 2   –   4 a c   =   ( - 17 ) 2   –   4 . 2 . 1   =   281   >   0 .

Theo hệ thức Vi-et: phương trình có hai nghiệm x1; x2 thỏa mãn:

x 1 + x 2 = − b / a = 17 / 2 x 1 x 2 = c / a = 1 / 2

b)  5 x 2   –   x   –   35   =   0

Có a = 5 ; b = -1 ; c = -35 ;

Δ   =   b 2   –   4 a c   =   ( - 1 ) 2   –   4 . 5 . ( - 35 )   =   701   >   0

Theo hệ thức Vi-et, phương trình có hai nghiệm x1; x2 thỏa mãn:

x 1 + x 2 = − b / a = 1 / 5 x 1 ⋅ x 2 = c / a = − 35 / 5 = − 7

c)  8 x 2   –   x   +   1   =   0

Có a = 8 ; b = -1 ; c = 1

Δ   =   b 2   –   4 a c   =   ( - 1 ) 2   –   4 . 8 . 1   =   - 31   <   0

Phương trình vô nghiệm nên không tồn tại x1 ; x2.

d)  25 x 2   +   10 x   +   1   =   0

Có a = 25 ; b = 10 ; c = 1

Δ   =   b 2   –   4 a c   =   10 2   –   4 . 25 . 1   =   0

Khi đó theo hệ thức Vi-et có:

x 1 + x 2 = − b / a = − 10 / 25 = − 2 / 5 x 1 x 2 = c / a = 1 / 25

26 tháng 5 2017

Đáp án C

Xét phương trình bậc hai a x 2 + b x + c = 0   ( a ≠ 0 ) có biệt thức b = 2b'; Δ ' = b ' 2 - a c :

Nếu Δ' = 0 thì phương trình có nghiệm kép x 1  = x 2  = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

23 tháng 1 2019

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0)

có b = 2b’và biệt thức  Δ ' = b ' 2 − a c

Nếu Δ ' =0 thì phương trình có nghiệm kép = − b a

Đáp án cần chọn là: C

18 tháng 2 2019

Đáp án A

Xét phương trình bậc hai a x 2 + b x + c = 0   ( a ≠ 0 ) có biệt thức b = 2b'; Δ ' = b ' 2 - a c :

• TH1: Nếu Δ' < 0 thì phương trình vô nghiệm

• TH2: Nếu Δ' = 0 thì phương trình có nghiệm kép x 1  = x 2  = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

• TH3: Nếu Δ' > 0 thì phương trình có hai nghiệm phân biệt x 1 , 2  = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

30 tháng 5 2019

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0)

với b = 2b’ và biệt thức Δ ' = b ' 2 − a c

Trường hợp 1: Nếu  Δ ' < 0 thì phương trình vô nghiệm

Trường hợp 2: Nếu  Δ ' = 0 thì phương trình có nghiệm kép x1 = x2 = − b ' a

Trường hợp 3: nếu Δ ' > 0 thì phương trình có hai nghiệm phân biệt

x1,2 = − b ' ± Δ ' a

Đáp án cần chọn là: D

13 tháng 12 2017

Nếu Δ = 0 thì từ phương trình (2) suy ra (x + b/2a)2 =0

Do đó,phương trình (1) có nghiệm kép x = (-b)/2a

1 tháng 3 2017

Công thức tính Δ, Δ':

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9