K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

3A=3(x^2-x+1)/(x^2+x+1)

3A-1=(3x^2-3x+3)/(x^2+x+1)-1

3A-1=(3x^2-3x+3-x^2-x-1)/(x^2+x+1)

3A-1=(2x^2-4x+2)/(x^2+x+1)

3A-1=2(x-1)^2/(x^2+x+1)>=0

=>3A>=1

A>=1/3

=>GTNN của A là 1/3 khi x-1=0 hay x=1 

A-3=(x^2-x+1)/(x^2+x+1)-3

A-3=(x^2-x+1-3x^2-3x-3)/(x^2+x+1)

A-3=(-2x^2-4x-2)/(x^2+x+1)

A-3=-2(x+1)^2/(x^2+x+1)<=0

=>A<=3

=>GTLN của A=3 khi x=-1 

9 tháng 5 2017

con H=(x^2+x+1)/(x^2-x+1)

NV
26 tháng 7 2021

1.

Đặt \(x-2=t\ne0\Rightarrow x=t+2\)

\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)

\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)

2.

Đặt \(x-1=t\ne0\Rightarrow x=t+1\)

\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)

\(C_{max}=2\) khi \(t=3\) hay \(x=4\)

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

23 tháng 12 2021

c: \(=\left(x+1\right)^2+1>0\forall x\)

5 tháng 2 2022

Trả lời:

a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTNN của biểu thức bằng 2 khi x = 3

b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTLN của biểu thức bằng - 2 khi x = 3

c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\)  (đpcm)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1

17 tháng 6 2021

\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)

dấu'=' xảy ra<=>x=1=>Max A=6

\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)

\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)

\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)

dấu"=" xảy ra<=>x=y=2=>Max B=10

\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

dấu'=' xảy ra<=>x=1,y=-3=>MinC=2