Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\\ \text{Do }\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ A=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu \("="\) xảy ra khi :
\(\left|x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow x-\dfrac{1}{2}=0\\ \Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(A_{\left(Min\right)}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
\(B=2-\left|x+\dfrac{5}{6}\right|\\ \text{Do }\left|x+\dfrac{5}{6}\right|\ge0\forall x\\ \Rightarrow B=2-\left|x+\dfrac{5}{6}\right|\le2\forall x\)
Dấu \("="\) xảy ra khi :
\(\left|x+\dfrac{5}{6}\right|=0\\ \Leftrightarrow x+\dfrac{5}{6}=0\\ \Leftrightarrow x=-\dfrac{5}{6}\)
Vậy \(B_{\left(Max\right)}=2\) khi \(x=-\dfrac{5}{6}\)
a/ Với mọi x ta có :
\(\left|x-2\right|\ge0\)
\(\Leftrightarrow-\left|x-2\right|\le0\)
\(\Leftrightarrow10-\left|x-2\right|\le10\)
\(\Leftrightarrow A\le10\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
Vậy....
b/ Với mọi x ta có :
\(-3x^2\le0\)
\(\Leftrightarrow-3x^2+2014\le2014\)
\(\Leftrightarrow B\le2014\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy....
c/ Với mọi x ta có :
\(x^2\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+5\ge5\\x^2+1\ge1\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x^2+5}{x^2+1}\le5\)
\(\Leftrightarrow C\le5\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy...
d/ Với mọi x ta có :
\(\left|x-2\right|\ge0\)
\(\Leftrightarrow\left|x-2\right|+3\ge3\)
\(\Leftrightarrow\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)
\(\Leftrightarrow D\le\dfrac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
Vậy...
a: \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\)
Dấu '=' xảy ra khi x=-5/41
b: \(B=-\sqrt{x-\dfrac{2}{3}}-\dfrac{5}{13}\le-\dfrac{5}{13}\)
Dấu '=' xảy ra khi x=2/3
Ta có /x+1/ >/ 0 với mọi x
=> A>/ 5 với mọi x
=>Amax=5
Dấu "=" xảy ra<=>x+1=0<=>x=-1
B=(x^2+3)+12/(x^2+3)=1+(12/x^2+3)
ta có x^2+3 >/ 3 với mọi x
=>12/x^2+3 </ 12/3=4 với mọi x
=>B </ 1+4=5 với mọi x
Dấu "=" xảy ra<=>x=0
Vậy...
a) ĐKXĐ: \(x\ge-\sqrt{2}\)
Ta có: \(\sqrt{x+\sqrt{2}}\ge0\Rightarrow-\sqrt{x+\sqrt{2}}\le0\)
\(\Rightarrow A=1-\sqrt{x+\sqrt{2}}\le1\)
Vậy: GTLN của A là 1 khi \(\sqrt{x+\sqrt{2}}=0\Leftrightarrow x=-\sqrt{2}\)
b) ĐKXĐ: \(x\ge-2\)
Ta có: \(\sqrt{x+2}\ge0\)
\(\Rightarrow B=\sqrt{x+2}+\dfrac{1}{5}\ge\dfrac{1}{5}\)
Vậy: GTNN của B là \(\dfrac{1}{5}\)khi \(\sqrt{x+2}=0\Leftrightarrow x=-2\)
Không có gì, nếu bài làm có vấn đề gì thì bạn góp ý cho mình nha!
a) Vì \(\left(2x+\frac{1}{4}\right)^4\ge0\forall x\)
\(\Rightarrow A\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\)
b) \(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)
Vì \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\forall x\)
\(\Rightarrow B\le3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\)
với mọi x thì (2x+1/4)4>=0 (lớn hơn hoặc bằng )
A=(2x+1/4)4-1>=-1
để A đạt GTNN thì (2x+1/4)4=0
2x+1/4=0 =>x=-1/8
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
\(P=\dfrac{1}{2}+\sqrt{x}\ge\dfrac{1}{2}\)
Dấu "=" xảy ra khi:\(x=0\)
\(Q=7-2\sqrt{x-1}\le7\)
Dấu "=" xảy ra khi:\(x=1\)
Để P có GTNN => \(\sqrt{x}\) phải là số nhỏ nhất có thể.
\(\sqrt{x}\) nhỏ nhất <=> x là số tự nhiên nhỏ nhất
=> x = 0
Vậy GTNN của P = \(\dfrac{1}{2}+\sqrt{0}\) = \(\dfrac{1}{2}\)
Để Q có GTLN => \(\sqrt{x-1}\) phải là số nhỏ nhất có thể
\(\sqrt{x-1}\) nhỏ nhất <=> x-1 là số tự nhiên nhỏ nhất
=> x-1 = 0 => x = 1
Vậy GTLN của Q =\(7-2\sqrt{x-1}=7-2\sqrt{1-1}=7-2\sqrt{0}=7-2.0=7-0=7\)