K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

P - 3abc = (a+b)(b+c)(a+c)+abc - 3abc

= (a+b+c-c)(b+c)(a+c) - 2abc

= (a+b+c)(b+c)(a+c) - c(b+c)(a+c) - 2abc

= (a+b+c)(b+c)(c+a) - c(ab + bc +ac +c2) - 2abc

= (a+b+c)(b+c)(a+c) - c( ab +bc + ac +c2+ 2ab)

= (a+b+c)(b+c)(c+a) - c[(bc+c2+ac) + 3ab]

= (a+b+c)(b+c)(c+a) - c[c(b+c+a) + 3ab]

= (a+b+c)(b+c)(c+a) - c²(a+b+c) - 3abc

Ta có: a + b + c chia hết cho 6

⇒mà 6 ⋮ 2

⇒ a+b+c chia hết cho 2

⇒ a+b+c là số chẵn

⇒ trong 3 số a, b, c phải có ít nhất một số chẳn
⇒ abc ⋮ 2

⇒ 3abc ⋮ 6

mà a+b+c chia hết cho 6

⇒ (a+b+c)(b+c)(c+a) chia hết cho 6

c²(a+b+c) chia hết cho 6

⇒ (a+b+c)(b+c)(c+a) - c²(a+b+c) - 3abc chia hết cho 6

Vậy P - 3abc chia hết cho 6.

8 tháng 8 2018

a, \(\left(5n+2\right)^2-4=\left(5n+2-2\right)\left(5n+2+2\right)=5n\left(5n+4\right)⋮5\)

b, \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Vì (n-1)n(n+1) là tích 3 số nguyên liên tiếp

=>(n-1)n(n+1) chia hết cho 6 hay n^3-n chia hết cho 6

c, \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3-3abc=-c^3\)

=>a^3+b^3+c^3=3abc

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

AH
Akai Haruma
Giáo viên
18 tháng 11 2018

Bạn xem lại đề bài. Nếu $a,b,c$ là 3 số lẻ thì $a^3+b^3+c^3$ lẻ nên không thể chia hết cho $6$

1 tháng 5 2020

C=(a+b)(b+c)(c+a)-abc mà bạn