K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

Phương trình hoành độ giao điểm của (P) và d là  x 2 - m x - 1 = 0

Ta có ∆ = m 2 + 4 > 0 ∀ m . Suy ra phương trình luôn có 2 nghiệm phân biệt  x 1 ; x 2

Giả sử x 1 < x 2 . Khi đó:

S = ∫ x 1 x 2 m x + 2 - x 2 - 1 d x = ∫ x 1 x 2 m x + 1 - x 2 d x = m 2 + 4 m 2 6 + 2 3 ≥ 4 3  

Vậy m i n S = 4 3 ⇔ m = 0

Đáp án D

26 tháng 7 2018

Đáp án A.

= x 2 − x 1 − 1 3 x 1 + x 2 2 − x 1 x 2 + m 2 x 1 + x 2 + 1

2 tháng 11 2017

Đáp án D

y ' = 4 a x 3 + 2 b x ,   y ' 1 = - 4 a - 2 b

Phương trình tiếp tuyến tại A là: d: y=(-4a-2b)(x+1)

Xét phương trình tương giao:  a x 4 + b x 2 + c = ( - 4 a - 2 b ) ( x + 1 )

 

Phương trình có 2 nghiệm x=0,x=2 =>  4 a + 2 b + c = 0 28 a + 10 b + c = 0 ( 1 )

∫ 0 2 - 4 a - 2 b x + 1 -   a x 4 - b x 2 - c d x = - 2 a - b x 2 + - 4 a - 2 b x - a x 5 5 - b x 3 3 - c x 2 0 = - 112 5 a - 32 3 b - 2 c = 28 5 2 1 , 2 ⇒ a = 1 b = - 3 ⇒ y = x 4 - 3 x 2 + 2 ,   d :   y = 2 x + 2 c = 2 ⇒ S = ∫ - 1 0 x 4 - 3 x 2 + 2 d x = x 5 5 - x 3 - x 2 0 - 1 = 1 5

27 tháng 8 2017

Đáp án D

∫ 0 2 [ ( − 4 a − 2 b ) ( x + 1 ) − ax 4 − b x 2 − c ] d x = [ ( − 2 a − b ) x 2 + ( − 4 a − 2 b ) x − ax 5 5 − b x 3 3 − c x ] 2 0 = − 112 5 a − 32 3 b − 2 c = 28 5     ( 2 ) ( 1 ) , ( 2 ) ⇒ a = 1 b = − 3 c = 2 ⇒ y = x 4 − 3 x 2 + 2 , d : y = 2 x + 2 ⇒ S = ∫ − 1 0 ( x 4 − 3 x 2 + 2 ) d x = x 5 5 − x 3 − x 2 0 − 1 = 1 5

13 tháng 5 2017

Đáp án là A

20 tháng 5 2018

Đáp án D.

Ta có  y ' = 4 a x 3 + 2 b x → y ' − 1 = − 4 a − 2 b   . Phương trình tiếp tuyến của  (C) tại điểm  A − 1 ; 0  là đường thẳng

d : y = y ' − 1 . x + 1 ⇔ y = − 4 a − 2 b x − 4 a − 2 b

 

Phương trình hoành độ giao điểm của đường thẳng d và đồ thị (C) là:

  a x 4 + b x 2 + c = − 4 a + 2 b x − 4 a − 2 b ⇔ a x 4 + b x 2 + 4 a + 2 b x + 4 a + 2 b + c = 0 (*)

Quan sát đồ thị, ta thấy đường thẳng d cắt đồ thị  tại hai điểm có hoành độ   x = 0, x = 2 nên phương trình (*) có hai nghiệm x = 0, x = 2 .

Suy ra  

4 a + 2 b + c = 0 16 a + 4 b + 2 4 a + 2 b + 4 a + 2 b + c = 0 ⇔ 4 a + 2 b + c = 0 28 a + 10 b + c = 0  (1)

Diện tích hình phẳng giới hạn bởi đường thẳng d, đồ thị (C) và hai đường thẳng   x = 0, x = 2  

  S = ∫ 0 2 − 4 a − 2 b x − 4 a − 2 b − a x 4 + b x 2 + c d x = 28 5

  ⇔ ∫ 0 2 − 4 a − 2 b x − 4 a − 2 b − a x 4 − b x 2 − c d x = 28 5

⇔ − a 5 x 5 − b 3 x 3 − 2 a + b x 2 − 4 a + 2 b + c x 0 2 = 28 5

  ⇔ − 32 5 a − 8 b 3 − 4 2 a + b − 2 4 a + 2 b + c = − 28 5 ⇔ 112 5 a + 32 3 b + 2 c = 28 5 ( 2 )

Giải hệ phương trình gồm (1) và (2) ta tìm được: a = − 1, b = 3, c = − 2 .

Suy ra C : y = − x 4 + 3 x 2 − 2  và d : y = − 2 x − 2 . Diện tích hình phẳng cần tính là:

S = ∫ − 1 0 − x 4 + 3 x 2 − 2 − − 2 x − 2 d x = ∫ − 1 0 − x 4 + 3 x 2 + 2 x d x = ∫ − 1 0 x 4 − 3 x 2 − 2 x d x  

  = x 5 5 − x 3 − x 2 − 1 0 = 1 5 (đvdt).

14 tháng 10 2018

Đáp án A.

22 tháng 11 2018

18 tháng 10 2018

Đáp án A

Phương trình hoành độ giao điểm của đồ thị hàm số  y = x 2 − 6 x + 9  và trục hoành là:

x 2 − 6 x + 9 = 0 ⇔ x = 0 .  

Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số  y = x 2 − 6 x + 9  và 2 đường thẳng x= 0; y = 0 là:

Phương trình đường thẳng (d) có hệ số góc k và cắt trục tung tại điểm A(0;4) là: y = kx +4

Gọi B là giao điểm của (d) và trục hoành  ⇒ B − 4 k ; 0 .  

Để (d) chia (H) thành 2 phần có diện tích bằng nhau thì:

.

14 tháng 3 2018

Đáp án A

Phương trình hoành độ giao điểm của đồ thị hàm số  y = x 2 − 6 x + 9  và trục hoành là:

x 2 − 6 x + 9 = 0 ⇔ x = 0 .  

Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số  y = x 2 − 6 x + 9 và 2 đường thẳng x= 0; y = 0 là:

Phương trình đường thẳng (d) có hệ số góc k và cắt trục tung tại điểm A(0;4) là: y = kx +4

Gọi B là giao điểm của (d) và trục hoành  ⇒ B − 4 k ; 0 .  

Để (d) chia (H) thành 2 phần có diện tích bằng nhau thì: